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THEORY OF REPRODUCING KERNELS()

BY
N. ARONSZAJN

PREFACE

The present paper may be considered as a sequel to our previous paper in
the Proceedings of the Cambridge Philosophical Society, Théorie générale de
noyaux reproduisants—Premiére partie (vol. 39 (1944)) which was written in
1942-1943. In the introduction to this paper we outlined the plan of papers
which were to follow. In the meantime, however, the general theory has been
developed in many directions, and our original plans have had to be changed.

Due to wartime conditions we were not able, at the time of writing the
first paper, to take into account all the earlier investigations which, although
sometimes of quite a different character, were, nevertheless, related to our
subject.

Our investigation is concerned with kernels of a special type which have
been used under different names and in different ways in many domains of
mathematical research. We shall therefore begin our present paper with a
short historical introduction in which we shall attempt to indicate the dif-
ferent manners in which these kernels have been used by various investi-
gators, and to clarify the terminology. We shall also discuss the more im-
portant trends of the application of these kernels without attempting, how-
ever, a complete bibliography of the subject matter.

In Part I, we shall discuss briefly the essential notions and results of our
previous paper and give a further development of the theory in an abstract
form. In Part II, we shall illustrate the results obtained in the first part by a
series of examples which will give new developments of already known ap-
plications of the theory, as well as some new applications.
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HisTORICAL INTRODUCTION

Examples of kernels of the type in which we are interested have been
known for a long time, since all the Green’s functions of self-adjoint ordinary
differential equations (as also some Green’s functions—the bounded ones—
of partial differential equations) belong to this type. But the characteristic
properties of these kernels as we now understand them have only been
stressed and applied since the beginning of the century.

There have been and continue to be two trends in the consideration of
these kernels. To explain them we should mention that such a kernel K(x, ¥)
may be characterized as a function of two points, by a property discovered
by J. Mercer [1](%) in 1909. To the kernel K there corresponds a well deter-
mined class F of functions f(x), in respect to which K possesses the “repro-
ducing” property (E. H. Moore [2]). On the other hand, to a class of func-
tions F, there may correspond a kernel K with “reproducing” property (N.
Aronszajn [4]). ‘

Those following the first trend consider a given kernel K and study it in
itself, or eventually apply it in various domains (as integral equations, theory
of groups, general metric geometry, and so on). The class F corresponding to
K may be used as a tool of research, but is introduced a posteriori (as in the
work of E. H. Moore [2], and more recently of A. Weil [1], I. Gelfand and
D. Raikoff [1], and R. Godement [1, 2]). In the second trend, one is inter-
ested primarily in a class of functions F, and the corresponding kernel K is
used essentially as a tool in the study of the functions of this class. One of
the basic problems in this kind of investigation is the explicit construction and
computation of the kernel for a given class F.

(?) Numbers in brackets refer to the bibliography at the end of the paper.
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The first of these trends originated in the theory of integral equations as
developed by Hilbert. The kernels considered then were continuous kernels
of positive definite integral operators. This theory was developed by J. Mercer
[1, 2] under the name of “positive definite kernels” and on occasion has been
used by many others interested in integral equations, especially during the
second decade of this century. Mercer discovered the property

n
(1) > K(yi, y)Es = 0, yi any points, £; any complex numbers(®),
3, d=1

characterizing his kernels, among all the continuous kernels of integral equa-
tions. To this same trend belong the investigations of E. H. Moore [1, 2]
who, during the second and third decades of the century, introduced these
kernels in the general analysis under the name of “positive hermitian mat-
rices” with a view to applications in a kind of generalization of integral
equations. Moore considered kernels K (x, ¥) defined on an abstract set E and
characterized by the property (1). He discovered the theorem now serving as
one of the links between the two trends, proving that to each positive
hermitian matrix there corresponds a class of functions forming what we now
call a Hilbert space with a scalar product (f, g) and in which the kernel has
the reproducing property.

(2) J) = (f(#), K(=, 3)).

Also to the same trend (though seemingly without any connection to
previous investigations) belongs the notion introduced by S. Bochner [2]
during the third decade of the century under the name of “positive definite
functions.” Bochner considered continuous functions ¢(x) of real variable x
such that the kernels K(x, ) =¢(x—7v) conformed to condition (1). He
introduced these functions with a view to application in the theory of Fourier
transforms. The notion was later generalized by A. Weil [1] and applied by
I. Gelfand and D. Raikoff [1], R. Godement [1, 2], and others to the in-
vestigation of topological groups under the name of positive definite func-
tions or functions of positive type. These functions were also applied to
general metric geometry (the Hilbert distances) by I. J. Schoenberg [1, 2],
J. v. Neumann and I. J. Schoenberg [1], and S. Bochner [3].

The second trend was initiated during the first decade of the century in
the work of S. Zaremba [1, 2] on boundary value problems for harmonic
and biharmonic functions. Zaremba was the first tointroduce, in a particular
case, the kernel corresponding to a class of functions, and to state its repro-
ducing property (2). However, he did not develop any general theory, nor
did he give any particular name to the kernels he introduced. It appears
that nothing was done in this direction until the third decade when S. Berg-

(3) Mercer used only real numbers ; aé he considered only real kernels K.
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man [1] introduced kernels corresponding to classes of harmonic functions
and analytic functions in one or several variables. He called these “kernel
functions.” They were introduced as kernels of orthogonal systems in these
classes for an adequate metric. The reproducing property of these kernels
was noticed by Bergman [1] (also by N. Aronszajn [1]), but it was not
used as their basic characteristic property as is done at present.

In the third and fourth decades most of the work was done with kernels
which we shall call Bergman’s kernels, that is, kernels of classes of analytic
functions f of one or several complex variables, regular in a domain D with the

quadratic metric
f | f Izdr.
D

" A quantity of important results were achieved by the use of these kernels
in the theory of functions of one and several complex variables (Bergman
[4, 6, 7], Bochner [1]), in conformal mapping of simply- and multiply-con-
nected domains (Bergman [11, 12], Zarankiewicz [1] and others), in pseudo-
conformal mappings (Bergman [4, 5, 8, 9], Welke [1], Aronszajn [1], and
others), in the study of invariant Riemannian metrics (Bergman [11, 14],
Fuchs [1, 2]), and in other subjects.

The original idea of Zaremba to apply the kernels to the solution of
boundary value problems was represented in these two decades by only a few
papers of Bergman [1, 2, 3, 10]. Only since thelast war has this idea been put
into the foreground by a series of papers by Bergman [13], and Bergman and
Schiffer [1, 2, 3]. In these investigations, the kernel was proved to be a
powerful tool for solving boundary value problems of partial differential equa-
tions of elliptic type. By the use of variational methods going back to Hada-
mard, relations were established between the kernels corresponding to classes
of solutions of different equations and for different domains (Bergman and
Schiffer [1, 3]). For a partial differential equation, the kernel of the class of
solutions in a domain was proved to be the difference of the corresponding
Neumann’s and Green’s functions (Bergman and Schiffer [1, 3]) (in the
special case of the biharmonic equation a relation of this kind was already
noticed by Zaremba). Parallel to this revival of the application of kernels
to partial differential equations there is developing a study of the relationship
between these kernels and Bergman’s kernels of analytic functions (Bergman
[12], M. Schiffer [1, 2]). Also the application of kernels to conformal mapping
of multiply-connected domains has made great progress as all the important
mapping functions were proved to be simply expressible by the Bergman’s
kernel (Bergman [11, 12], P. Garabedian and M. Schiffer [1], Garabedian
[1], and Z. Nehari [1, 2]). Quite recently, the connection was found be-
tween the Bergman’s kernel and the kernel introduced by G. Szegt (P.
Garabedian [1]).

In 1943, the author ([4] also [6]) developed the general theory of repro-
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ducing kernels which contains, as particular cases, the Bergman kernel-
functions. This theory gives a general basis for the study of each particular
case and allows great simplification of many of the proofs involved. In this
theory a central role is played by the reproducing property of the kernel in
respect to the class to which it belongs. The kernel is defined by this property.
The simple fact was stressed that a reproducing kernel always possesses prop-
erty (1) characteristic of positive hermitian matrices (in the sense of E. H.
Moore). This forms the second link between the two trends in the kernel
theory (the theorem of E. H. Moore forming the first link was mentioned
above).

The mathematicians working in the two trends seem not to have noticed
the essential connections between the general notions they were using. At
present the two concepts of the kernel, as a positive hermitian matrix and as a
reproducing kernel, are known to be equivalent and methods elaborated in
the investigations belonging to one trend prove to be of importance in the
other.

We should like to elaborate here briefly on the matter of the terminology
which has been used by various investigators. As we have seen above, dif-
ferent names have been given to the kernels in which we are interested. When
the kernels were used in themselves, without special or previous consideration
of the class to which they belonged, they were called “positive definite
kernels,” “positive hermitian matrices,” “positive definite functions,” or
“functions of positive type.” In cases where they were considered as de-
termined, and in connection with a class of functions, they were called
“kernel functions” or “reproducing kernels.” It is not our intention to settle
here the question of terminology. Our purpose is rather to state our choice

“and to give our reasons for it together with a comparison of the terminology
we have chosen with that used by other authors.

It would seem advisable to keep two names for our kernels the function
of each name being to indicate immediately in what context the kernel under
consideration is to be taken. Thus, when we consider the kernel in itself we
shall call it (after E. H. Moore) a positive matrix(*), in abbreviation, p. mairix,
or p. m. When we wish to indicate the kernel corresponding to a class of func-
tions we shall call it the reproducing kernel of the class, in abbreviation, 7.
kernel or r.k.

As compared to other terminology, we beheve that the name “positive
definite function” or perhaps better “function of positive type” will probably
continue to be used in the particular case when the kernel is of the form
¢(x—9), x, y belonging to an additive group. This term has been used in a
few instances for some more general kernels, but we believe that it would
prove to be more convenient if it were restricted to the particular case

() We drop here the adjective “hermitian” since the condition that the quadratic form (1)
be positive implies the hermitian symmetry of the matrix.
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mentioned above.

Although the name of “positive definite kernels” would seem, somehow,
more adequate than “positive matrices,” especially since it was introduced
first, we have chosen rather the term used by E. H. Moore. This is because
we wish to reserve the notion of positive definite kernel for more general
kernels which would include the positive definite matrices as well as some
other non-bounded kernels (such as the kernels of general positive definite
integral operators and also the recently introduced pseudo-reproducing
kernels [Aronszajn 5, 6]).

On the other hand, when we have in mind the kernel corresponding to a
given class of functions, the simplest terminology is to call it “the kernel of
the class” or “the kernel belonging to the class.” But when some ambiguity is
to be feared, or when we wish to stress its characteristic property, we use the
adjective “reproducing.”

PaRT I. GENERAL THEORY

1. Definition of reproducing kernels. Consider a linear class F of functions
f(x) defined in a set E. We shall suppose that F is a complex class, that is,
that it admits of multiplication by complex constants.

Suppose further that for f& F is defined a norm 7]l (that is, a real number
satistying: [If]]20, [lf]l=0 only for =0, |[¢f]| =[] lfH 7+l =+l
given by a quadratlc hermitian form Q(f)

Il = ¢

Here, a functional Q(f) is called quadratic hermitian if for any constants
&1, £ and functions fi, fo of F

Qf1 -+ &ofe) = | & |2Q(f1) + EEQ(f1, f2) + E£Q(fy f1) + | £ lZQ(fz)

O(fy, fo2) =Q(f f1) is the uniquely determined bilinear hermitian form cor-
responding to the quadratic form Q(f). This bilinear form will be denoted
by (£, fo) =Q(fi, f2) and called the scalar product corresponding to the norm
[Ifll (or the quadratic metric |I£]l2). We have

2= . -

The class F with the norm, || ||, forms a normed complex vector space.
If this space is complete it is a Hilbert space.

If Fis a class of real-valued functions forming a real vector space (that is,
admitting of multiplication with only real constants), if the norm, |1l in
Fis given by ”sz_. Q(f) with an ordinary quadratic form Q (that is, for real
&, £, QEfitEaf) =80(f) +26560(f, f2) +£0(f2), where Q(fy, f2) is the cor-
responding bilinear symmetric form), and if F is a complete space, it is a real
Hilbert space. The scalar product is given there by (fi, f2) =Q(f1, J2)-

" Every class F of real functions forming a real Hilbert space determines a
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complex Hilbert space in the following way: consider all functions fi-+if
with f; and f; in F. They form a complex vector space Fe in which we define
the norm by ||fi+ifsl|2= ]|f1|]2+||f2[|2. F, is a complex Hilbert space.

The complex Hilbert spaces F determined in this way by real Hilbert
spaces are characterized by the two properties:

(1) if fEF, fEF (fis the conjugate complex function of f),

@ Al =F.

Let Fbe a class of functions defined in E, forming a Hilbert space (complex
or reai). The function K (x,y) of x and y in E is called a reproducing kernel (r.k.)
of Fif

1. For every y, K(x, ) as function of x belongs to F.

2. The reproducing property: for every y& E and every f& F,

() = (f(@), K(%, 3)) =

The subscript x by the scalar product indicates that the scalar product
applies to functions of x.

1f a real class F possesses a r.k. K (x, y) then it is immediately verified that
the corresponding complex space F, possesses the same kernel {(which is real-
valued):

From now on (unless otherwise stated) we shall consider only complex
Hilbert spaces. As we have seen there is no essential limitation in this assump-
tion.

It will be useful to introduce a distinction between the terms subclass and
subspace. When F and F; are two classes of functions defined in the same set
E, F, is a subclass of F;if every f of Fy belongs to Fy. Fiisa subspace of Fs if
it is a subclass of F» and if for every fE Fi, HfH1=HfH2 (I |l and I |z are
the norms in Fy and F; respectively). FiC F; means that Fi is a subclass of Fs.

2. Résumé of basic properties of reproducing kernels. In the following, F
denotes a class of functions f(x) defined in E, forming a Hilbert space with
the norm H f[] and scalar product (fi, f2). K (x, ¥) will denote the corresponding
reproducing kernel.

The detailed proofs of the properties listed below may be found in
[Aronszajn, 4].

(1) If a r.k. K exists it is unique. In fact, if another K'(x, y) existed we
would have for some y

0 < ||K(x, y) — K'(x, y)||* = (K — K/, K — K")
= (K—K,K)—(K—K,K)=0

because of the reproducing property of K and K'.

(2) Existence. For the existence of a r.k. K(x, y) it is necessary and suffi-
cient that for every v of the set E, f(¥) be a continuous functional of f run-
ning through the Hilbert space F.

In fact, if K exists, then |f(3)| S||[fl(K(x, y), K(x, ))*=K(y, .
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On the other hand if f(y) is a continuous functional, then by the general
theory of the Hilbert space there exists a function g,(x) belonging to F such
that f(y) = (f(x), g,(x)), and then if we put K(x, y) =g,(x) it will be a repro-
ducing kernel.

(3) K(x, v) is a positive matrix in the sense of E. H. Moore, that is, the
quadratic form in &, « -+, &, .

n

(1) 2 K(ys yiki

i, 4=l
is non-negative for all ¥, - - -, 9, in E. This is clear since expression (1)
equals H > % K(x, v:)&i|?, following the reproducing property. In particular it
follows that

K(x,%) 20, K(x,9) =K(y, %), [K(x 9)|*= K, 2) K@, 9).

(4) The theorem in (3) admits a converse due essentially to E. H. Moore:
to every positive matrix K(x, v) there corresponds one and only one class of func-
tions with a uniquely determined quadratic form in it, forming a Hilbert space
and admitiing K{(x, v) as a reproducing kernel.

This class of functions is generated by all the functions of the form
> K (x, ¥). The norm of this function is defined by the quadratic form
| >ar K(x, y)||2= > > K(y:, ;)& Functions with this norm do not as
yet form a complete Hilbert space, but it can be easily seen that they may be
completed by the adjunction of functions to form such a complete Hilbert
space. This follows from the fact that every Cauchy sequence of these func-
tions (relative to the above norm) will converge at every point x towards a
limit function whose adjunction to the class will complete the space.

(5) If the class F possesses a r.k. K(x, ), every sequence of functions {fn}
which converges strongly to a function f in the Hilbert space F, converges also
at every point in the ordinary sense, lim f.(x)=Ff(x), this convergence
being uniform in every subset of E in which K(x, x) is uniformly bounded.
This follows from

[ F) = fol0) | = | (&) = fula), K(x, 9)) | S If — full | K, 3)]
= |If = £ll(K (3, 92

If f. converges weakly to f, we have again f.(y)—f(y) for every y (since,
by the definition of the weak convergence, (f.(x), K(x, ¥))—(f(x), K(x, v)).
There is in general no increasing sequence of sets E,CE;C - - - —E in each
of which f, converges uniformly to f.

If a topology (a notion of limit) is defined in E and if the correspondence
ye>K (x, y) transforms E in a continuous manner into a subset of the space F,
then the weakly convergent sequence { f,,} converges uniformly in every
compact set E;CE. In fact E, is transformed into a compact subset of the
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space F. For every ¢>0 we can then choose a finite set (y1, - - -, y1) CEis0
that for every yE E; there exists at least one y; with HK(x, y) —K(x, yk)H
<e/4M, where M=1.u.b., ||f.|.

Further, if we choose g so that for #>ns, |f(7s) —fa(yw)| <e/4, we shall
obtain for yEE,.

| 7 = 720 | = | GG = o) + () = falwn)) + Ualye) — f2lo)) |
< | 1) = faly) | + | (F(&) — fule), K=, 3) — K (=, 3)) |

= 17 = 2l ) = Kol S 20 <

A

IIA

The continuity of the correspondence y<>K(x, v) is equivalent to equi-
continuity of all functions of F with “f“ < M for any M>0. This property is
satisfied by most of the classes with reproducing kernels which are usually
considered (such as classes of analytic functions, harmonic functions, solu-
tions of partial differential equations, and so on).

(6) If the class F with the r.k. K is a subspace of a larger Hilbert space 9,
then the formula

1) = (b, K(%, ¥)) =

gives the projection f of the element % of $ on F.

In fact h=f+g, where g is orthogonal to the class F. K(x, y) as a function
of x belongs to F and so we have (&, K(x, y)) = (f+g, K(x, ) =(f, K(x, )
=f(y) by the reproducing property.

(7) If F possesses a r.k. K, then the same is true of all closed linear sub-
spaces of F, because if f() is a continuous functional of f running through F,
it is so much the more so if f runs through a subclass of F. If F" and F'/ are
complementary subspaces of F, then their reproducing kernels satisfy the
equation K'4+K'' =K. '

(8) If F possesses a r.k. K and if {gn} is an orthonormal system in F, then
for every sequence {an} of numbers satisfying

Slalt <,
1
we have
o © 1/2
5 el {669 | 5 K 92 Elal)
1 1

In fact, for a fixed v, the Fourier coefficients of K (x, y) for the system {gn}
are

(K(x» y)r. gn(x)) = (g.(%), K(x, y)) = gn(y)
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Consequently

> a(3)? £ (K(=, 9), Kz, 9))= = K(, 9).

1

Therefore

£ el sl 2 (Slet) (Sleo)”
= K 2 Zlent)

1

3. Reproducing kernels of finite-dimensional classes. If F is of finite
dimension #, let wi(x), - + -, wa(x) be » linearly independent functions of F.
All functions f(x) of F are representable in a unique manner as

(1) f(x) = 2 trwa(®), ¢ complex constants,
1

The most general quadratic metric in F will be given by a positive definite
hermitian form

2 ]2 = 2 et
i,d=1
The scalar product has the form

3) (f, 8 = Z i i$ifl where g = D, mWr.

It is clear that
4) asp = (i, W)

Therefore the matrix {Olij} is the Gramm’s matrix of the system {'wk}
This matrix always possesses an inverse. Denote by { Bij} the conjugate of
this inverse matrix. We have then
(5) > i =0 or 1 followingasis kori=rk.

7
It is immediately verified that the function
(6) K, y) = 2 Biwi(x)w(y)
i,4=1

is the reproducing kernel of the class F with the metric (2).
The matrix {8} is hermitian positive definite. From the preceding de-
velopments we get, clearly, the following theorem.
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THEOREM. A function K(x, ) is the reproducing kernel of a finite-dimen-
stonal class of functions if and only if it is of the form (6) with a positive definite
matrix {ﬁi,-} and linearly independent functions wi(x). The corresponding class
F is then generated by the functions wi(x), the functions fC F given by (1) and
the corresponding norm H f“ given by (2), where {C\fij} s the inverse matrix of
{Bii}- ’

4. Completion of incomplete Hilbert spaces. In applications, we often
meet classes of functions forming incomplete Hilbert spaces, that is, linear
classes, with a scalar product, satisfying all the conditions for a Hilbert space
with the exception of the completeness. For such classes, two problems present
themselves. Firstly, the problem of completing the class so as to obtain a
class of functions forming a complete Hilbert space and secondly, to decide
(before effecting the completion of the class) if the complete class will possess
a reproducing kernel.

A few remarks should be added here about the problem of the completion
of a class of functions forming an incomplete Hilbert space. Consider such a
class F. It is well known that to this class we can adjoin ideal elements which
will be considered as the limits of Cauchy sequences in F, when such a limit
is not available in F, and in such a way we obtain an abstract Hilbert space
containing the class F as a dense subset. This space, however, will not form
a class of functions. In quite an arbitrary way we could realize the ideal ele-
ments to be adjoined to F as functions so as to obtain a complete space formed
by a linear class of functions, but, in general, this arbitrary manner of comple-
tion will destroy all the continuity properties between the values of the func-
tions and the convergence in the space.

In this paper when we speak about the functional completion of an in-
complete class of functions F, we mean a completion by adjunction of func-
tions such that the value of a function f of the completed class at a given
point v depends continuously on f (as belonging to the Hilbert space) (). From
the existence theorem of reproducing kernels we deduce the fact that a com-
pleted class has a reproducing kernel. In this way the problem of functional
completion and of the existence of a reproducing kernel in the complete class
is merged into one problem. We shall prove here the following theorem:

THEOREM. Consider a class of functions F forming an incomplete Hilbert
space. In order that there exist a functional completion of the class it is necessary
and sufficient that 1° for every fived yC E the linear functional f(y) defined in F
be bounded; 2° for a Cauchy sequence { fm} CF, the condition f,(y)—0 for every
vy implies H me-»O. If the functional completion is possible, it is unique.

Proof. That the first condition is necessary is immediately seen from the

(%) A more general functional completion was introduced in connection with the theory of
pseudo-reproducing kernels (N. Aronszajn {5]).
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existence theorem of reproducing kernels, since the complete class would
necessarily have such a kernel. The necessity of the second condition follows
from the fact that a Cauchy sequence in F is strongly convergent in the
complete space to a function f, and the function f is the limit of f, at every
point y of E. Consequently, f=0and the norms of f, have to converge to the
norm of f which is equal to zero. To prove the sufficiency we proceed as fol-
lows: consider any Cauchy sequence {fn} CF. For every fixed y denote by
M, the bound of the functional f(y) so that

1) )| = M.

Consequently,

| fm(3) — f2(9) | S M| fm — 7ll-

It follows that {fn(y) } is a Cauchy sequence of complex numbers, that is,
it converges to a number which we shall denote by f(y). In this way the
Cauchy sequence {fn} defines a function f to which it is convergent at every
point of E.

Consider the class of all the functions f, limits of Cauchy sequences
{ fn} CF. It is immediately seen that it is a linear class of functions, and that
it contains the class F (since the Cauchy sequence { f,,} with f,=f&F is
obviously convergent to f). Consider, then, in the so-defined class F, the norm

2) (172 = Tim [} 7]

for any Cauchy sequence { fn} C F converging to f at every point y. This
norm does not depend on the choice of the Cauchy sequence: in fact, if
another sequence, { I } converges to f at every point ¥, then f,; —f, will be a
Cauchy sequence converging to zero, and by the second condition the norms
7 = fn” converge to zero.

Consequently,

| tim | fol] = tim [\full [ = tim [|7]] = (7]l | < lim |72 = 7| = .

On the other hand, it is readily seen that [|f]|} is a quadratic positive
form in the class F; it is obviously 0 for f=0, and it is positive for f#0 be-
cause of (1). This norm defines a scalar product in F satisfying all the re-
quired properties. It remains to be shown that F is complete and contains F
as a dense subspace.

The second assertion is immediately proved because FCF. For elements
of F,thenorms || ||, ]| |l coincide, and every function f& Fis, by definition,
the limit of a Cauchy sequence f,,} C Feverywhere in E. It follows that fis a
strong limit of £, in F since by (2)

= gl = it 5 = i = 0.
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To prove the first assertion, that is, the completeness of F, we shall con-

sider any Cauchy sequence {fn} CF. Since F is dense in F, we can find a
Cauchy sequence {f./ } C F such that

lim ||fn = fufl1 = 0.

The Cauchy sequence {f.;} converges to a function fEF. This con-
vergence is meant at first as ordinary convergence everywhere in E, but the
argument used above shows that the f. also converge strongly to f in the
space F. It follows immediately that f, converges strongly to f. The unique-
ness of the complete class is seen from the fact that in the completed class a
function f must necessarily be a strong limit of a Cauchy sequence {fn} CF.
Since a reproducing kernel must exist for the completed class, this implies
that f is a limit everywhere of the Cauchy sequence {f.} which means that
it belongs to the above class F. As the norm of f has to be the limit of ”nt|
it necessarily coincides with ||f||. It is also clear that every function f of F
must belong to the completed class. In summing up the above arguments we
see that any functional completion of F must coincide with F and have the
same norm and scalar product as F.

It should be stressed that the second condition cannot be excluded from
our theorem. We shall demonstrate this by the following example:

Consider the unit circle |z| <1. Take there an infinite sequence of points
{z,} such that

21 =z]) <=

We shall denote by E the set of all points 2,, and in E we shall consider
the class F of all polynomials in 2. It is obvious that the values of a polynomial
cannot vanish everywhere in the set E if the polynomial is not identically
zero. Consequently the values of a polynomial on the set E determine com-
pletely the polynomial. We define the norm for a function f of the class F by
the formula

= [ f Lo azay P= st iy

where p-denotes the polynomial whose values on the set E are.given by the
function f. We see that F satisfies all requirements for a Hilbert space with
the exception of completeness. The first condition of our theorem is satisfied
‘but the second is not. To prove the last assertion we take the Blaschke
function ¢(z) corresponding to {zn} This function has the following prop-
erties

¢(z,) = 0, n=1,23---,
|e(x) | < 1 for | 2] < 1.
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The function ¢(2) is a strong limit of polynomials p(z) in the sense
tim [ [ |6t — puo) aszy = .
lz]<1

Consequently the sequence {p;} is a Cauchy sequence in our class F and
the polynomials p(z) converge at each point z, to ¢(s,) =0, in spite of the
fact that the norms ||| converge to ||l >o0.

This example also shows us the significance of condition 2°. We can
say that if condition 2° is not satisfied it means that the incomplete class is
defined in too small a set. If we added a sequence of points {z. } of the unit
circle with a limit point inside the circle to the set E of our example, then the
class of polynomials, considered on this enlarged set E; with the same norm
as above, would satisfy condition 2°. There are infinitely many ways of en-
larging the set E where an incomplete class F is defined so as to insure the
fulfillment of condition 2°.

In the general case we can always proceed as follows. We can consider
the abstract completion of the class F by adjunction of ideal elements. This
completion leads to an abstract Hilbert space §. To every element of $ there
corresponds a well determined function f(x) defined on the set (the limit of
Cauchy sequences in F converging to this element). But to different elements
of § there may correspond the same function f. The correspondence is linear
and the functionals f(y) are continuous in the whole $. To every point y& E
there corresponds an element %, &9 such that f(y) = (f, hy), where f is any
element of § corresponding to the function f(x). As there are elements of 9
different from the zero element and which correspond to the function
identically zero on E, it is clear that the set of elements %, is not complete in
the space ©. (This is characteristic of the fact that condition 2° is not
satisfied.) To the set of elements /4, we can then add an additional set of ele-
ments so as to obtain a complete set in §. This additional set will be denoted
by E’. We can then extend the functions of our class F in the set E+E’ by
defining, for any element hEE’, f(h)=(f, k). This class of functions, so ex-
tended in E+E’, will then satisfy the second condition.

We shall complete this section by the following remark: It often hap-
pens that for the incomplete class F a kernel K(x, y) is known such that for
every v, K(x, ) as function of x belongs to F (or, even more generally, be-
longs to a Hilbert space containing F as a subspace), this kernel having the
reproducing property

f(» = (f(=), K(x, v)) for every f E F-

It is immediately seen that the first condition of our theorem follows from
this reproducing property so that it suffices to verify the second condition in
order to be able to apply our theorem.

5. The restriction of a reproducing kernel. Consider a linear class F of
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functions defined in the set E, forming a Hilbert space and possessing a r.k.
K(x, y). K is a positive matrix. If we restrict the points x, y to a subset
E,CE, K will still be a positive matrix. This means that K will correspond
to a class F; of functions defined in E; with an adequate norm || || We shall
now determine this class F; and the corresponding norm.

THEOREM. If K is the reproducing kernel of the class F of functions defined
in the set E with the norm || ||, then K restricted to a subset ExCE is the re-
producing kernel of the class Fi of all restrictions of functions of F to the subset
E.. For any such restriction, fi & F1, the norm | £ills s the minimum of WAl for ali
FEF whose restriction to E, is fi.

Proof. Consider the closed linear subspace F,C F formed by all functions
which vanish at every point of E;. Take then the complementary subspace
F'=FOF, Both F, and F’ are closed linear subspaces of F and possess
reproducing kernels Ky and K’ such that

n K =K,+ K.

Since Ky(x, y), for every fixed y, belongs to Fy, it is vanishing for x C Ey.
Consequently,

(2) K(x, y) = K'(% ), Jor « € Ex.

Consider now the class F; of all restrictions of F to the set E;. If two
functions f and g from F have the same restriction f; in E;, f—¢ vanishes on
E, and so belongs to F,. Conversely, if the difference belongs to Fy, f and g
have the same restriction f; in E;. It is then clear that all the functions fEF
which have the same restriction f; in E have a common projection f{ on F’
and that the restriction of f{ in E; is equal also to f1. Itis also clear that among
all these functions, f, f{ is the one which has the smallest norm. Consequently
by the definition of the theorem, we can write

@) [

The correspondence between fi€ F; and f{ €F’ obviously establishes a
one-to-one isometric correspondence between the space F; with the norm
| |l: and the space F’ with the norm Il

In order to prove that for the class Fy with the norm Il |l the reproducing
kernel is given by K restricted to Ei, we take any function fiE€ F; and con-
sider the corresponding function f{ €F’. Then, for y&EE, fi(y)=f{ ()
=(fi (x), K'(x, )).

Since K’(x, ¥), for every y belongs to F/, we may now write fi(y)
=(fli(x), K'(x, ¥))=(fi(x), Ki(x, ), where Ki(x, ¥) is the restriction of
K’(x, ¥) (considered as function of x) to the set E.

By hermitian symmetry we obtain from (2)
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K(x, v) = K'(z, y), for every y € L1

This shows that the restriction K;(x, y) of K’(x, ) coincides with the re-
striction of K to the set E;, which completes our proof.

The norm || ||1is especially simple when the subclass FoC F is reduced to
the zero function. In this case F/=F, each function i F; is a restriction of
one and only one function fC F (since every function of F vanishing in E;
vanishes identically everywhere in E), and therefore ”fIHl=”f” for the func-
tion f having the restriction fi.

6. Sum of reproducing kernels. Let Ki(x, y) and Ks(x, y) be reproducing
kernels corresponding to the classes F; and F; of functions defined in the

same set F with the norms “ H1 and H Hz respectively. K; and K, are posi-
tive matrices, and obviously K =K+ K, is also a positive matrix.
We shall now find the class F and the norm “ H corresponding to K.

Consider the Hilbert space § formed by all couples {fu fg} with f;&F..
The metric in this space will be given by the equation

(R (e PR A

Consider the class F, of functions f belonging at the same time to Fy and
F. (Fy may be reduced to the zero function). Denote by $a the set of all
couples {f, —f} for fE F,. It is clear that $, is a linear subspace of . It is
a closed subspace. In fact if {fa, —fa}—{f’,f/’} then f, converges strongly to
f'in Fi, and —f, converges strongly to f’/ in F,. Consequently, f, converges
in the ordinary sense to f’ and —f, to f’’, which means that f’'= —f’ and f’
and f"’ belong to F,. §, being a closed linear subspace of $ we can consider
the complementary subspace §’ so that §=H,D H’. To every element of H:
{f7, 1"} there corresponds the function f(x) =f(x) -+f"'(x). This is obviously
a linear correspondence transforming the space § into a linear class of func-
tions F. The elements of $ which are transformed by this correspondence
into the zero function are clearly the elements of §,. Consequently, this
correspondence transforms $’ in a one-to-one way into F. The inverse cor-
respondence transforms every function fEF into an element {g'(N, g’ (H}
of §’. We define the metric in F by the equation

A" = g0, 'O =g Dl + g Gl

Our assertion will be that to the class F with the above-defined norm there
corresponds the reproducing kernel K =K;+K,. To prove this assertion we
remark:

(1) K(x, v) as a function of x, for y fixed, belongs to F. Namely, it cor-
responds to the element {Kl(x, ), Ka(x, ¥) } c9.

(2) Denote for fixed v, K'(x, y) =g’ (K(x, »)) and K"'(x, ¥) =g""(K(x, ¥)).
For a function fEF, we write f'=g'(f), f"' =g''(f). Consequently, f(3) =f'(y)
+7"(3), K (%, 9)+ K" (x, ) = K (x, y) = K:(x, ) -+ Ka(x, ), and thus K"’ (x, y)
— Ka(x, ) = — [K'(x, ) — Ki(x, ) ], so that the element {Kl(x, y)—K'(x, ¥),
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Ko(x, y) — K" (x, v) } € Ho. Hence
F) =)+ 77() = (7(%), Ka(w, )1 + (f(%), Ko, 3))e
= ({7, 1"}, { K, 9), Ka(x, 9)})
= ({f, 1"} 1K (%, 9), K"(%, 9)})
+ ({f, 7} {Ba(w, 9) = K (=, 9), Ka(s, 9) — K" (z, 9)}).

The last scalar product equals zero since the element {f’, f”} €9’ and the
element {Kl(x, y)—K'(x, v), Kolx, v)—K"'(x, y)}€$g. The first scalar
product in the last member is, by our definition, equal to (f(x), K(x, 3))
which proves the reproducing property of the kernel K(x, v).

We can characterize the class F as the class of all functions f(x) =fi(x)
+fo(x) with f;EF;. In order to define the corresponding norm without
passage through the auxiliary space, we consider for every fE F all possible
decompositions f=fi14f» with f;& F,. For each such decomposition we con-
sider the sum ||fil[3+]|72/[3. ||/]| will then be defined by

Il = min (201 + 17]12]

for all the decompositions of f. To prove the equivalence of this definition
and the previous one we have only to remember that f(x) corresponds to the
element {fi, f2} €9 and also that f corresponds to (M, g’ }€$’, that
is, f=fi+f2:=¢'(f)+g¢"’(f). Consequently,

H=g' =~ — (]
so that {fi—g'(f), fo—g""(f) } €Ho and
WA+ 1l = [ 237 = g @ DHE + 1= 2, £ = DS

and this expression will obviously get the minimal value if and only if
fi=g (), fo=g"(f) and its value is then given by

1{eW, 'Ni

which by our previous definition is ||f]]2.
Summing up, we may write the following theorem:

THEOREM. If K:(x, v) is the reproducing kernel of the class F; with the norm
” I i then K(x, v) = Ki(x, )+ Ka(%, v) is the reproducing kernel of the class F
of all functions f =fi+fe with fiE F;, and with the norm defined by

1" = min [l + 121,
the minimum taken for all the decompositions f=fi+f2 with f.S Fi(®).

It is easy to see how this theorem can be extended to the case where

(5) This theorem was found by R. Godement [1] in the case of a positive definite function
in a group.
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K(x, y) = > _i=1 Ki(x, ¥). A particularly simple case presents itself when the
classes Fy and F; have no function besides zero in common. The norm in F
is then given simply by ||f]|2=|lfilF+]f:l3-

In this case (and only in this case) F1 and F; are complementary closed
subspaces of F.

If we denote by F the class of all conjugate functions of functions of a
class F, then the kernel of F is clearly Ki(x, y)=K(x, y) =K(y, x) (K is the
kernel of F and in F the scalar product (f, )1 is given by (g, f), the norm
l|f“1 by Hf”) Consequently Re K(x, y) =2"Y(K(x, y)-+K(y, x)) is the repro-
ducing kernel of the class Fy of all sums f+g, for f and g in F with the norm
given by

¢ lel]s = 2 min [17]" + [1ll']

the minimum taken for all decompositions ¢ =g, f and g in F.

If Fis a complex space corresponding to a real space, that is, if F=F
and ||| =||f]| (see §1), it is clear that Fo=F and Ifllo=|lfl|- Consequently the
kernel K =Re K is real and this property characterizes the kernal K cor-
responding to a real space.

7. Difference of reproducing kernels. For two positive matrices, Ki(x, )
and K(x, ), we shall write ‘

1) K, <K

if K(x, y)—Ki(x, y) is also a p. matrix.

From K;<K,<Kj, it follows clearly that K;<KKs. On the other hand, if
K&K, and K,<&KKj, it follows that K= K,. In fact, we then have Ks(x, x)
— Ki(x, x) 20 and also Ki(x, x) — Ka(x, #) 20, which means Ko(x, x) — K1(x, x)
=0. Further, by the property of positive matrices,

| Ko, ) — Ka(x, 9) |* S [Ka(x, ) — Ka(x, 2)][Ka(y, 3) — Ka(y, )] = 0,

so that Ka(x, ¥) = Ki(x, ¥) for every x, v in E. Thus we see that the symbol K
establishes a partial ordering in the class of all positive matrices.

TuroreM 1. If K and K, are the r.k.’s of the classes F and Fy with the
norms || Il 1] |1, and if KxkK, then F.CF, and Hflnlénfll] for every L& F1.

Proof. K;<K means that Ks(x, y) = K (x, ¥) — Ki(x, ¥) is a positive matrix.
Consider the class of functions F; and the norm || |2 corresponding to K.
As K = K1+ K we know by the theorem of §6 that Fis the class of all func-
tions of the form fi(x)~+fx(x) with fiEF, and f,& Fe. In particular, when
f2=0, the class F contains all functions fi&Fi so that FiCF. On the other
hand, in F we have, by the same theorem,

AL = min (A1 + 7]
for all decompositions fi=f{+f7, with f{ € F; and f{ € F,. In particular, for
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the decomposition fi=f1-+0, we obtain

lll" = Al
which achieves the proof.
Turorewm 1L If K is the r.k. of the class F with the norm || ||, and if the
linear class FyCF forms a Hilbert space with the norm | |l such that Il Al

g[] f1H for every fLEF, then the class Fy possesses a reproducing kernel K,
satisfying KiK.

Proof. The existence of the kernel for F involves the existence of constants
M, such that |f(y)] éMny“ for all fEF. In particular, for i€ FiCF, we get

| A | = M)Al = a7

which proves the existence of the kernel K; of F.
Let us now introduce an operator L in the space F, transforming the
space F into the space F; and satisfying the equation

(fu, ) = (fu LN for every f1 € Fu.

The existence and unicity of Lf is proved in the following way: (fi, f),
for fixed f, is a linear continuous functional of f in the space F. A fortiori, it
is a similar functional in the space Fi. As such, it is representable as a scalar
product in F; of f; with a uniquely determined element Lf of Fi.

The operator L is everywhere defined in F, linear, symmetric, positive,
and bounded with a bound not greater than 1. It is clear that L is everywhere
defined and linear. It is symmetric because for any two functions f, f’ of F,
(Lf, f)=(Lf, L=, LHh=If, )= Lf"). It is positive because
(Lf, f) = (Lf, L 20. It is bounded with a bound not greater than 1 because
(1f, H=(Lf, Ln=|1AE=z|| L2 Consequently, |Lfl*< s, ) <[zl -[I1l],
and thus || L] <|lfl.

Consider now the operator I—L (I being the identical operator). This
operator clearly possesses the same properties as those enumerated above for
L. Therefore there exists a symmetric, bounded square root L’ of this
operator. (In general there will be infinitely many L’ available and we choose
any one of them.) Hence

L'? =] — L.

We define F; as the class of all functions fo=L'f for f&F. Denote by
F, the closed linear subspace of F transformed by L’ into 0, and by F’ the
complementary space F&F,. The functions of Fy are also characterized by
the fact that L"f=0 (from L"*f=0 it follows that (L"f, f) = (L'f, L'f) =||L'f||>
=0) which is equivalent to f=Lf.

Now denote by P’ the projection on F’. Every two functions f, g of F
transformed by L’ into the same function f, of F, differ by a function belong-
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ing to F,. Consequently, they have the same projection on F’. It is also clear
that the class F’ is transformed by L’ on F; in a one-to-one way. We remark
further that

Fs CF

since for fo& Fo, (fo, L'f) = (L’fo, f) =(0, f) =0. In the class F; we introduce
the norm || |2 by the equation

70l = 1Pl for any f with fo = L'f.

With this metric the class F; is isometric to the subspace F'CF (the
isometry being given by the transformation L’). It follows that F; is a com-
plete Hilbert space and we shall show that the class Fs with the norm || |2
admits as reproducing kernel the difference K(x, y) —Ki(x, ). To this effect
we remark firstly that the operator L is given by the formula

fily) = Lf = (f, Ki(x, ¥))-

In fact, since LfCFy, F) ={fi(x), Ki(x, ))1=(f(x), Ki(x, ¥)). Conse-
quently for any fixed z, the operator L applied to K(x, z) gives the function
LK (x, 2) = Ki(v, 2). If follows that the operator I —L =L"? transforms K (x, )
into LK (%, 5) =K (y, 2) — K1(v, 2). This formula proves, firstly, that K(x, 2)
—Ki(x, ) as a function of x belongs to F, since it is the transform of
L'K(x, z) by L’. Secondly, we prove the reproducing property for any
f:E Fa:

fZ(y) = (f2<x)r K(x! 3’)) = (L,fy K(xr 3’)) = (f: L,K(x: 3’))
= (P'f, P'L'K(%, y)) = (L'f, L'L'K(=, y))2
= (f2(x)! K(xy y) - K1(.’)€, y))Q

In these transformations we took f as any function of F such that f,=L'f
and we used the property L'K(x, v) € F; CF’. This finishes the proof of our
theorem.

The proof of Theorem II has established even more than the theorem an-
nounced: namely, it gives us the construction of the class F; and the metric
| |2 for which the difference K — K| is the reproducing kernel. Let us sum-
marize this in a separate theorem.

TueoreM 1II. Under the hypotheses of Theorem 11, the class Fy and the
norm || ||z corresponding to the kernel Ko=K — K are defined as follows: the
equation fi(y)=Lf=(f(x), Ki(x, ¥)) defines in F a positive operator with bound
not greater than 1, transforming F into FyCF. We take any symmetric square
root L' = (I—L)Y2 F, is the class of all transforms L'f for fEF. Let Fo be the
closed linear subspace of all functions f& F with f=Lf and let F' be F&F,. L’
‘establishes a one-to-one correspondence between F' and Fa. The norm II£2]|2 for
fe=L'f", f'EF', is then given by
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7l = N1

The construction of the class F, is somehow complicated because we need
the square root L’ of the operator I— L. However, there exists a much easier
way of constructing an everywhere dense linear subclass of F» and the norm
I liz in this subclass. Namely, we can consider the class F{ of all trans-
forms (I —L)f=f—Lf=L"f, of fEF, by the operator I—L.

" This clearly is a linear subclass of F;. The norm || |2 in F{ can be de-
fined as follows:

ale =z = @nip = G LD = (. f =) = (L N — U, L)
= (f!f) - (Lfr Lf)l’

In these transformations we considered ff =f—Lf=L"f.

Fy is everywhere dense in F; (in respect to the norm H |[2), otherwise we
would have a function fy=L’f'#0 with (L'f’, L"’g):=0 for all g& F. We can
suppose here f'€F’ so that 0=(L'f’, L”g),=(f", L'g)=(L'f’, g) whence
L'f'=0, f'EF,, which is impossible.

The simplest case is the one where F§ = F,. By using the spectral decom-
position, we can easily show that this case presents itself if, and only if, the
zero is not a limit point of the spectrum of L’, which is the equivalent of
saying that 1 is not a limit point of the spectrum of L. In this case Fo=F'.
If L has a bound <1, the spectrum does not contain 1 and the subspace F’
coincides with the whole space F so that Fp=F.

When L is completely continuous, the only limit point of the spectrum of
L is zero, so that 1 is certainly not a limit point, and F{ = F,=F".

We shall add still another theorem which results immediately from
Theorem III. "

TueoreM IV. Let K be the r.k. of class F. To every decompo;“ition K=K,
+ K in two p. matrices Ky and Ko, there corresponds a decomposition of the
identity operator I in F in two positive operators L and Ly, I =1L, -+ L., given by

Lif(y) = (f(x), Ka(z, 9)),  Laf(3) = (f(2), Ka(#, 9)),

such that if LY? and LY? denote any symmetric square roots of Li and L, the
classes Fy and F; of all transforms LY*f and LY%f vespectively, fE F, correspond to
the kernels Ky and Ks. If Fiy, i=1, 2, is the class of all f& F with Lif =0, and if
F!" = F& Fy,, then LY'? establishes a one-to-one correspondence between F{' and
Fi and the norm || || in F: is given by ||Li*f||:=]|fl| for every fEF!".
Conversely, to each decomposition I =L,~4L, in two positive operators there
correspond classes F; with norms ” || ; defined as above. The corresponding r.k.’s
K are defined by Ki(x, y)=L;K(x, y) and satisfy the equation K =K+ K,.

8. Product of reproducing kernels. Consider two positive matrices Ki
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and K defined in a set E. Using a classical result of I. Schur concerning finite
matrices, it is easy to prove that their product K;-K, is also a positive
matrix. We shall prove this theorem, constructing at the same time the class
Fand thenorm || || corresponding to the matrix K = Ki- Kx(7). To this effect,
we consider the class F; and the norm || ||: corresponding to K and form the
direct product F’ of the Hilbert spaces F; and Fp, F'=F,® F,(%). We con-
struct this direct product in the following manner: We form the product set
E’'=EXE of all couples of points {xl, xg}, x;EE. In the set E’ consider the
class of all functions f/(x1, x») representable in the form:

' Ty (B (k)
) flay, a2 = L A1 (afa (2a),
k=1
with f{® € F, and /¥ € F,. As scalar product of two such functions we define:
L N S S ) '
2) (Fog) =2 22(f1 g nlfe s 82 )
k=1 l=1

where m is the number of terms in the representation of g’. The same func-
tion f’ may admit of many different representations of type (1). The scalar
product, (f’, g’)’, is independent of the particular representation chosen for
f"and g’. In fact, we see immediately from (2) that

3) ', g) = i ((f (2, 2, g1 (521, g5 (%)

which proves that (f/, g’) is independent of the particular representation of f’.
In a similar way we prove that it is independent of the particular representa-
tion of g’. We still have to prove that (f/, g’)’ satisfies all the requirements
for the scalar product. It is clearly seen that it is a bilinear hermitian form in
f’, g’ and it remains to be proved that (f/, /)’ 20 and is equal to zero only
when f’=0. In order to prove this, we take any representation of f’ of
type (1) and orthonormalize the sequences { 1(")} and { fz(k)} in the spaces
Fy and F; respectively. Denote by {f#?} and {f{*®} the orthonormalized
sequences, where k=1,2, - - -, ny,I=1,2, - » -, 7.

Every function f® is then a linear combination of the orthonormal func-
tions £ so that we obtain a representation for f’ as a double series

ol & (k1) (1,1
) i, %) = 20 D2 awaft fo .
k=1 l=1

We then obtain for (f/, ')’ the following expression

(") The idea of the proof was arrived at independently by R. Godement and the author.

Godement applied it only to positive definite functions. ,
(®) For the notion of direct product of abstract Hilbert spaces see J. v. Neumann and F.

J. Murray [1].
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2SN G (k1) (B,1) 1y WD

(f’:f/)=22 > iak,lak',l’(fl i (e hfe )2

k=1 l=1 k'=1 l'=1

©)

n1 n2

=2 2 el
B I=1

It is clear from this representation that (f/, /) 20 and equals zero only
when all the ax,;=0, that is, when f'=0. The class of all functions f* of type
(1) does not yet form in general a Hilbert space because it may not be
complete. To complete this class with respect to the norm | |I", we con-
sider a complete orthonormal sequence {g&k)} in the space F;, 1=1, 2. It is
obvious that the double sequence {ggk) (x:) - g9 (x5) } is composed of functions
of type (1) and is orthonormal in respect to the norm H ]| ’. Consider then,

all the functions g’ of the form

0

(%) )

) g (%1, %) = 2, 2 akagr (#0g2 (%2)
k=1 =1

with

(7) @, 8) =2 Xlal> <o
k=1 l=1

It is clear that any finite sum of type (6) is also of type (1) and that the
norm || ||’ for such finite sums coincides with the norm introduced in (7).
We prove firstly that every sum of type (6) is absolutely convergent for
every X3, xz. In fact, as the class Fy possesses the reproducing kernel Ki, in
view of (7) we have

0 =] 1/2
Ell arl | o (a)| £ [Ka(m, xl)]l/2|: Z:l! a1 l{l .
Then,
>3 el g (e || &2 ()

=1 I=1

ol
o~

0 1 ©0 1/2
(8) < 2| g (x| [Ka(an, xa]l”[ 2| e l”]
=1 k=1

© 0 1/2
< [Ka(my, 20) |12 [ Koo, %) |12 I: 22w 12]

k=1 l=1

since the space F, possesses the reproducing kernel Ko.

The class of functions g’ of the form (6) clearly forms a complete Hilbert
space, isomorphic with the space of double sequences {ak,z} satisfying (7).
The inequality (8) gives us further, for a function g’ of type (6),
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[ g (v, ¥2) | < Ka(yn, 90 2Ka(y2, 92)27|gl",

which means that the space of functions of type (6) possesses a reproducing
kernel.

It remains to be proved that this space is the completion of the class of all
functions f of type (1) with the norm || [|’. As already the finite sums of
type (6) are everywhere dense in the space of all functions of type (6) it is
sufficient to prove that every function of type (1) is of type (6). For this, it
is enough to prove that every function of type (1) may be approximated as
closely as we wish (in respect to the norm H ”’) by finite sums of type (6).
Let us consider a representation (1) of the function f’. We can approximate
every f® by a finite linear combination 1® of functions gy) so that Hh?‘>
<[P, |If®—#P||:<e. Before we proceed further, we shall prove for
every function f’ and any of its representations (1) the inequality

2

%) (k)H
2.

Il = S A"

" Infact,

li B A 1)

1712 = (7 7y =

[Nk

2

ANl o1l 12l

1

IIA

n
3 —
n
k=1 1=

[ S1A7s70 ]

Continuing with the proof of the approximation we consider the functions

-~

&) (k)

W (%, x2) = g‘, ki (x0)f2 (%),

2L () (%)
g (21, x2) = Z by (x1) by (x2).
k=1

It is clear that %’ is of type (1) and that g’ is at the same time of type (1) and
(6), which can be seen by developing the functions #® as linear combinations
of g?. Denoting by M the maximum of all Hffk)”,-, we obtain

I =l =lf = wl + | = ¢l

(k) (%) (k)

Iy — || = z 0P @) — 52 @) )|

(%) (k) (k)H
2

= kglllfl — I el e 2

< > Me = nMe,
k-1
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SNl = 1 5 35 e = mite

I~ el =

Z 1P () (P () — B ()

A

Finally, we obtain
Hf’ — g’l]’ =< 2uMe,

which proves our assertion.

The class of all functions of type (6) with the norm given by (7) forms
the direct product F’ = Fi® Fs. As it is obtained by functional completion of
the class of functions of type (1), this class being independent of the choice of
orthogonal systems {g(lk)} and {gék) }, the class F’ is also independent of the
choice of these systems (see the uniqueness of functional completion in §4).

We shall now prove the following theorem:

TuroreM 1. The direct product F' = Fi® F possesses the reproducing kernel
K'(x1, X2, Y1, yz) =K1(x1, yl)KZ(x2y y2)-

The proof is immediate. Firstly, as a function of w1, x5, K’ is of the form
(1) and so belongs to F’. Secondly, for any function g’ of the form (6) we have

Flm y0) = 5 3 ena(gs (1), Kalws, y))algs (w2), Kalwa, y9))2
= (g’(xla x2)’ K,(xl» X2, Y1, 3’2))'

which completes the proof.

From Theorem I we see immediately that the kernel K(x, )
= Ki1(x, v) Ka(x, ¥) is a p. matrix as the restriction of the kernel K'(x1, x2, y1, ¥2)
to the subset Ei(CE’ consisting of the “diagonal” elements {x, x} of E'.
Further, from the theorem of §5 we obtain the class of functions and the
norm corresponding to the kernel K. Thus we have the following theorem.

TuroreM I1. The kernel K(x, v) = Ki(x, ) Kq(x, ) is the reproducing kernel
of the class F of the restrictions of all functions of the direct product F' = F1@® Fy
to the diagonal set E, formed by all the elements {x, x} & E'. For any such re-
striction f, ||fl| = min \l’||” for all g’ EF', the resiriction of which to the diagonal
set Ey s f.

RemARK. Let {g®} be a complete orthonormal system in Fi. Then every
function f& F is representable as a series

(k) (%) (k) (k)

1) = Zf @e(), £ € P, Zj:llfz < w.

Among all such representations of f(x) there exists one (and only one)
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which gives its minimum to the sum _||f®|3. This minimum is equal to 111]2.

We can apply Theorem II to a class F and its conjugate F. The product
of the corresponding kernels is | K(x, | ?=K(x, y)K(y, x) and the cor-
responding class may be obtained from the remark above.

9. Limits of reproducing kernels. We shall consider two cases: (A) essen-
tially, the case of a decreasing sequence of classes F1D F;D - - - with a de-
creasing sequence of kernels K> K> K> - - - ; (B) essentially, the case of
an increasing sequence of classes and kernels.

A. The case of a decreasing sequence. Let {En} be an increasing sequence
of sets, E their sum

(1) E=E1+E2+°--,E1CE2C-...

Let F,,n=1,2, - - -, be a class of functions defined in E,. For a function
foEF, we shall denote by fum, m <n, the restriction of f, to the set EnCE,
(fan=1r=). We shall suppose then that the classes F, form a decreasing sequence
in the sense

(2) for every f, € F, and everym = n,  fum © Fo.

Suppose further that the norms || ||. defined in F, form an increasing
sequence in the sense
3) for every fo € Fy and cverym < n, || fun||m < || fulln-

Finally, we suppose that every F, possesses a reproducing kernel K.(x, ).

The case of all sets E, equal, Ey=FE;= - - - =E, is not excluded. Clearly,
in this case fam =fn, F1C Fn, and, following Theorem II of §7, it is enough to
suppose the existence of Ki(x, ) in order to deduce the existence of all K,
and to obtain the property K, <K, for m <#.

In the general case we have to introduce the restrictions Kn» of K, to
the set E,, (m <n). By the theorem of §5, K, is the r.k. of the class F» of all
restrictions fu» for f, € F,. The norm in F,. is given by

[ fumllam = min||fla  for all fn with fum = fam.
From (3) we get
[ Fanllam 2 (| fan]|
and consequently, by Theorem II of §7,
4) Kom K Ky, m < .
We shall now prove the following theorem.

TuaeoreM 1. Under the above assumptions on the classes F,, the kernels
K, converge to a kernel Ko(x, v) defined for all x, y in E. K, is the r.k. of the
class Fy of all functions f, defined in E such that 1° their restrictions fon in En
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belong to Fnpyn=1,2, -+, 2° limy— Hfo,,Hn<oo. The norm of fo&< Fy is given
by I|f0l|0=limn=no ”fOn”n-

ReMark. Condition 1° implies, following (3), that 1im,,=wa0n”,, exists, but
it may be infinite.

Proof. The convergence of K, to K is to be understood in this way: any
two points %, y in E belong to all E, starting from some E,, on. Consequently
K.(x, ) are defined for n>ny and we have to prove lim,—,, K.(x, 3) = K(x, y).

For fixed yEEy and k<m=n we have, following our assumptions,

K, ) — Kt )|k < [|Kn(, 3) = Kom(z, 9|
= En(3, ) = Ko 3) = Kan(3 9) + || Kumlars )|
< Kn(y, ) — 2Ka(9, 3) + | a2
= Ku(y, ) — Ka(3, 3.

From (4) it follows that K,,— K is a p.d. matrix. Therefore Ku(3, ¥)
— Kam(, 9) =Ky, y) —Ka(y, ¥) 20, and the sequence {Km(y, ) }mgk is a
decreasing sequence of non-negative numbers. Consequently it is a con-
vergent sequence. (5) shows then that the functions Kni(x, y) € Fy, for fixed
k and m— =, converge strongly in Fj to some function ¢(x) € Fy. This in-
volves liMmeew Kmi(x, ¥) =liMn_w Kn(x, ¥) =¢i(x) for every x& E.

Since for every %, v in E we can choose a k so that x and y belong to Ey, it
is clear that Kn.(x, ) converge and that the limit Ko(x, ¥) does not depend
upon the choice of k. The function ¢:(x) is clearly the restriction Kox(x, y) of
K, to Ei. Consequently Kni(x, v), for fixed y, converges strongly in Fi to
Ku(x, y) which belongs to Fi. We then obtain from (5), by taking n— <,

2
©) [|Kmi(z, 3) = Ko, s = Kuulys 9) — Koy, 9):
1Ko, )|k < || K, ) — K s + [|Kme, s
< (Bn(3, 3) — Ko(y, )2 + [ Kn(s Dl
= (Kn(3, 9) — Koly, 92 + (Kn(y, y))'*
and for m— o, ”Kok(x, y)lliéKo(y, ).
Therefore for each yEE, K(x, ), as function of x, belongs to the class Fo
of our theorem.
Let us now prove that the class Fy is a Hilbert space.

Fo is Iinear, since ”af0n+6g0n”n§ lal ”fOn”n"l_ 1 Bl ”gOn”n-
|I70]|2 is a quadratic form, since

(5)

Hafo -+ Bgollﬁ = lim HafOn -+ .BgOnH:
= lim [ea| Folls + aBfons goe)n + 38(gen, fun)n + B8] goall]-
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Since the quadratic form in square brackets converges for all values of
the complex variables «, 3, it converges to a form of the same kind. This
proves that Hf0[|§ is a quadratic form and also that

(7) (fo, go)o = }Lnl (me gOn)n-

It remains to be proved that F, is complete.

Take a Cauchy sequence {f{’}CF, The inequality [|f$&—fs||:
<[lfm —s®|l,, for 1>k, gives, when I— oo, |l7e — @] <78 ~£&lo. Hence,
{fé’,ﬁ‘)}m=1,2,... is a Cauchy sequence in Fy, limue, fi =¥+ € Fy. It is clear
that ¢, is the restriction to E; of a function ¢, defined in E. We have

fos” = wodle = lim 150" ~ gor'le < im 112" — 76"l

This allows us to prove that ¥, E Fy, since it gives a bound for Hx[xokﬂ x inde-
pendent of k, namely

(m) (m) (n) (m) (m) (n)H
0.

Woelle = {10711 + lim [172™ = £a"lo < {150 o + tim |27 = 1o

On the other hand, it shows that

157 = tolle = fim [10” = pode 3 i 157 — 771

and consequently limuyee Hf((,m)——z[/o”o=0. This achieves the proof of com-

pleteness.
We have still to prove the reproducing property of Ky To this effect
take any fo& Fy, yE E. For sufficiently large #» we have

Jo(3) = foa(9) = (fou(®), Kn(%, 3))n = (fou(%), Kon(, 3))n
-+ (fOn(x>, Kn(xr y) - KOn(xy y))ﬂ-
For n— o, the first scalar product in the last member converges, by

formula (7), to (fo, Ko(x, ¥))e. The second scalar product converges to 0; in
fact, by formula (6) (with k2 =m=m), it is in absolute value smaller than

“fﬂanKn(xr y) — Koa(, 3’)”% = ”fOHO(Kn(yv y) — Ko(y, )2

This achieves the proof of our theorem.
B. The case of an increasing sequence. Let {E,.} be a decreasing se-
quence of sets, E their intersection

(8) E=Fy Eo oo ,EyDE D --.
Let F, be a class of functions defined in E,. As before, we define the re-

striction fum, for f,& F,, but now m has to be greater than n. We suppose
then that F, form an sncreasing sequence
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(9) for every fo EF, and every m = 1, fum € Fn.
We suppose further that the norms H Hn form a decreasing sequence
(10) for every fo € Fo and everym = n, || faml|m = || ol

Finally, we suppose that every F, possesses a r.k. K,.(x, v).

Now, even for all E, equal, we cannot deduce the existence of all kernels
K, from the existence of one of them.

As in the case A, we get for the restrictions K.» of K, the formula

(11) Kuom K< K, for m > n.

For yEE, {Km(y, y)} is an ¢ncreasing sequence of positive numbers. Its
limit may be infinite. We define, consequently,

(12) Ey = set of y € E, such that Ko(y, y) = lim K.(y, y) < .
m=o

For an illustration of this point consider Bergman’s kernels K, for a
decreasing sequence of domains E,. If the intersection E of the domains E,
is composed of a closed circle with an exterior segment attached to it, the set
E, will be composed of all interior points of the circle.

We suppose that E, is not empty and define the limit-class of the classes
F, in the following way: let F, be the class of all restrictions f,; of functions

fr&F, (n=1,2,+.-) to the set E,. From (10), we know that the sequence
{“fnk“k } 4=n,ni1, - is decreasing and we can define
(13) 1 fsollo = Tim [ o

As in case A we prove that ||f,[3 is a positive quadratic form. This form
is positive definite since from Hf,,o||0= 0 it follows that for any y&E E,, fno(y)]
=) | =] Fur@), K, 1)l < |[fouil[sEa(, ) V2] faol[o (Ko, ))12=0,
that is, f,e=0. Consequently l [o is a norm in F.

In general F, will not be complete. In order that Fy admit of a functional
completion with a reproducing kernel, there are two conditions to be fulfilled
which are given in the theorem of §4. The first one is that for every y there
exists a constant M, so that

(14) | fao(¥) | < M| fndl|o for all fao € Fo.

Let us remark that the functions f,y may be considered as defined in
the whole set E (taking the restriction of f, to E). Then, for every yE E, the
condition (14) is equivalent to Ko(y, y) =lim K,(y, y) < «. In fact, from the
latter condition it follows in the same manner as above that |f"0(y)|
<|[fnollo(Ko(v, )12, that is, (14) with M,=(Ko(y, ¥))¥'2. From (14), by tak-
ing fa(x) =Ku(x, 3) we get Ku(y, ) <My|[Kuolw, 3)]oSM[Kulx, ).
= M,(K. (3, 9)2, that is, K,(y, y) < M.
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Consequently, condition (14), that is, condition 1° of §4, is assured by our
restriction to the set Eo. But the condition 2° of §4 is in general not assured.

We may illustrate this by the counter-example of §4. Take all the E,
equal to the set E of this counter-example. As class F,, we take the #-dimen-
sional subspace of the class F introduced there, consisting of all polynomials
of degree <n. Each F, is a complete space and its r.k. K, converges to the
Bergman kernel of the circle, restricted to E. Consequently E,=E, Fo=F
and || ||o is clearly the norm introduced there.

To overcome this difficulty we can proceed as indicated in §4. We com-
plete F, by ideal elements; in the completed Hilbert space Fo we choose an
additional set E’ of ideal elements such that the functions of Fy, extended to
Ey,+E’, with the same norm as in Fo, form a space admitting a functional
completion leading to a class Fo with a reproducing kernel K.

Following the theorem of §5, we can return now to our set E, by restrict-
ing the functions of Fo to E,. If we take in the restricted class the norm de-
fined in the theorem of §5, we shall get as r.k. the restriction of K, to Eo.
The restricted class F¢* and its norm || ||& can then be described, in terms of
the space Fp and its norm | |lo, in the following way.

feE F§ if there is a Cauchy sequence { ) } C F, such that

(15) ‘ f;k(x) = lim f;n)(x) for every x & Ey,

(16) I3 = min lim 1757l

the minimum being taken for all Cauchy sequences { é")}CFo satisfying
(15). There exists at least one Cauchy sequence for which the minimum is
attained. Such sequences will be called determining fi*.

The scalar product corresponding to H ”3‘ is defined by .

(17) (o g0)s = lim (55", g0 )e

for any two Cauchy sequences {f§?} and { g} determining f&f and g

It is important to note that formula (17) is still valid when only one of
the sequences {f}, {g®} is determining, the other satisfying only (15).

All these facts about the space F¢ and its norm and scalar product are
easily obtained when we form, as in §5, the subspace FSCF, of all fiEF,
vanishing in E,. The complementary subspace F{ =F©F) is then in an
isomorphic correspondence with F§, f¢ —f¢, where f5 is the restriction of
f{ to E,. Further,

L I L 2

HJ‘:“: = H]?é”;: (fo, g0)o = (]7(;,‘ 20)0,
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where H ”0~ and ( , )p are the norm and scalar product in Fy.
A Cauchy sequence {fg} CF, converges in F, to a function fo. In the set
E, it converges everywhere to a function f¢f& F¢* which is the restriction of
fo to Eq. £t is also the restriction of f{ =projection of J, on F{. Since fo—J§
€ F, we get
tim [[12"ffo = 7lle”" = 75" + o — 7ol = 14115
n=eo
The equality here is attained if {f§”} convergesin Fyto f{. Such a Cauchy
sequence we have called as determining f§. If now two Cauchy sequences
{7} and {g{”} converge everywhere in E, to f* and g¢*, they converge in
Fy to vectors fo and g, whose restrictions to Ey are f¢f and g¢. If 7§ and g
are projections of fo and goon F¢, then (£, g¢) ¢ = (7{, &d )o , but lim (f§?, g)o
= (fo, Zo)o - If one of the sequences, say {fé”)}, determines its limit in FE,,
then fo=7¢, and (f¢, g&)é = (7¢, &)o = (F{, go)o =lm(f$, g&)o.
The space F¢* being completely defined we prove the following theorem.

TuroreM I1. The resirictions K.o(x, ¥) for every fixed y& Eqy form a Cauchy
sequence in Fo. They converge to a function K¢ (x, v) € Fi* which is the reproduc-
ing kernel of F¢. '

Proof. By an argument similar to the one used in (5) we obtain for
ns=m=sk

(18) [ Emi(, 3) — Kur(ts 9)lli < Ky, 3) — Ka(3, 9).
“Taking k—«, we have
(19) [ Ko, 3) — Ko, 9o £ K, %) — Kaly, 9).

This proves, together with (12), that { K,o(x, )} is a Cauchy sequence in
Fo. By property (14) this sequence converges for every x & E, to a function
K§(x, y) which, by definition (15), belongs to F.

It remains to prove the reproducing property of Kg. To this effect take
any fq €Fy and a Cauchy sequence {f§?} C F, determining f&. Each f{is a
restriction of some fi, EFy,, f§” =f,0. By (13) there exists an increasing se-
quence m; <ms< - - - such that
: 1

—'}'L2

2
My ”fknO

(20) M, > km kanmn

It is clear that {Km,o(x, %)} is also a Cauchy sequence converging to
K{(x, ). Consequently, from (17) it follows that

21) (fo(®), Ko, )0 = lim (fiao(2), Knyo(ss 3))o.

We may now write
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(Frao(2)s Kmpo(#, 3))0 = (Fruma(2)s Kono(% 3))m,
(22) - [(fknmn(x)’ Kmn(xr y))mn - (fkno(x)’ K,,.,,o(x, y))o]'

The square bracket is of the form [(g, B)m,~— (20, Bo)o] for g, ki of Fr, (g0, ho
are restrictions of g, & to E,). This is a bilinear form in g, & and the cor-
responding quadratic form (g, g)m,— (g0, go)o=|lgl%. —|lgdll§ is positive (fol-
lowing (10) and (13)). Consequently the Cauchy-Schwarz inequality is valid
for this form and in the case of the square bracket of (22) it gives in connec-
tion with (20)

2

[T 11 = [ emallme = [0

1
é - HK""n(x’ y)l
n

2,1/2

i v — || Ko 9)]lo]

0

(1K, (2, )

1
my, — T Kmn(yv y)1/2-
n

For n— w this converges to 0, since Ku, (¥, )/ Ko(y, y) < . Therefore,
(21) and (22) yield :

(fo(x), Ka(®, ))0 = 1m (frm(2), Koy )y = W0 frpm ()

= lim fuo(y) = lim /2" (3) = fo(3),

which is the reproducing property of K§.

REMARK. A particularly simple case is the one where the class Fo with
the norm || H o happens to be a subspace of a class F possessing a reproducing
kernel. Then, condition 2° of §4 is clearly satisfied; F¥ is the functional
completion of Fo, the norm || ||§ is an extension of the norm || Ilo, and Fg
is simply the closure in F of F,.

A trivial case of this kind is one where the F, form an increasing se-
quence of subspaces of a class F with a r.k. Hence Ei=F;= -+ =E=E,
and F¢ is the closure of the sum ZFn.

10. Construction of a r.k. by resolution of identity. Let us give a brief
résumé of the essential properties of resolutions of identity in a Hilbert space
$ (for a complete study of resolutions of identity, especially in connection
with the theory of operators, see M. H. Stone [1]). For simplicity’s sake we
shall suppose here that the space § is separable.

We call a resolution of identity a class {Px} of projections in §, depending
on a real parameter A, — © <A<+ «», and having the following properties:

1. P, is a projection on a closed subspace §HC9, increasing with
A O CH for M <A

2. Py—0 for A—— o ; Py—I (identity operator) for A—+- 0.

For any open interval A: N’ <A <\’/, we define

(1 A = Hr' © D, AP = Py, — Py.
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AP is the projection on A$.
For any decomposition of the real axis into intervals Az= N\, Nit1),
— oo+ o s <Ap<A <A <M <N < - - - =+ », we have, obviously,

) I =2 AP,

the series converging in the sense of strong limit for operators.

A real number Ay belongs to the spectrum of {Px} if AP#0 for every
interval A containing N,. The numbers belonging to the spectrum form a
closed set.

For any real # and any decreasing sequence of intervals A, containing 4
and converging to # there exist the limits

3) 5P = lim AP, 69 = lim A9,

the second limit being the intersection of the decreasing sequence of sub-
spaces A,9. These limits do not depend on the choice of A, and §,P is the
projection on §9. Only for an enumerable set of @, say {Ok}, is 89 P#0.

If we have 8, P =1, which means 8,908,594 - - - =9, we say that the
spectrum of { Py} is discrete.

If, for all 8, 8P =0, we say that the spectrum of { P} is continuous (often
called purely continuous).

In our applications we shall meet, essentially, only discrete spectra or
continuous spectra.

It has been proved (theorem of Hellinger-Hahn) that for any spectrum
there exist finite or infinite systems {fn()\) } of elements f,(A\) €9, depending
on A, such that if we denote by Af, the difference f,(\"") —f.(\'), we have

(@) for m#=n, (Aifm, Aofa) =0 for any intervals Ay, As.

(b) (Aifs, Asfn) =0 for any non-overlapping intervals A;, As.

(c) For every interval A, the elements Aif,, n=1,2, - - « for all A;CA, belong
to the subspace AD and form o complete system in AD.

The minimal number of elements in such a system {fn()\)} is called the
multiplicity of the spectrum. The spectrum is called simple if the multiplicity
=1, that is, if there exists such a system with only one element fi(\).

In the case of a discrete spectrum the multiplicity is the maximal dimen-
sion of the subspaces §9.

If a system of elements {f,(\)} satisfies (a) and (b) and instead of (c)
satisfies the weaker condition

(c) The elements Af,for n=1,2, - - - and for all intervals A form a complete
system in D,
then the system { an\)} determines a corresponding resolution of identity
{P\} (for which it satisfies (c)) in the following manner:

O is the subspace generated by all the Af,, n=1,2, - - -, A=\, N'"") with
AT,
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This resolution of identity is continuous to the left, that is, HH=lim D
for M’ \. This condition (or the right side continuity) is usually accepted, for
reasons of convenience, as an additional condition on resolutions of identity.

For any system {f.(\) } satisfying (a), (b), and (c), it is seen that H fn()\)H2
is a non-decreasing function p.(A\), Apn=un()\")—/.Ln()\’)=”Afn”2. We con-
sider the measure u., introduced on the real axis by u.(N), which leads to the
Lebesgue-Stieltjes integral [®(N)du.(N). It has been proved that for every
# € there exists the limit

. (u, Afa) A, fa(N))
4 ) = 1 = )
4) éa(N) )"/)‘1’1:\1“\)\ ||Af,,”2 dua(\)

for all X with exception of a set of u,-measure 0.
We have further

() (]2 = 22 f " a0 [t

16,100
Qpin O‘)

© wo=-Zf s O TN dumy whore  ¥a(\) =

Let us now apply the above considerations to the construction of a r.k.
We suppose that our Hilbert space $ is a class of functions defined in E with
ark K(x, 9).

For a given resolution of identity { P)} every subspace A9 will have ar.k.
which we shall denote by AK (%, ¥). The kernel AK determines the projection
AP by the equation

() APf = fiy) = (f(#), AK(%, )), for any f € .
The kernel K corresponds to the identity I and following (2) we have
(8) K(xv y) = Z AkK(xv y)v
%

for any decomposition {Ax} of the real axis. The series in (8) converges
absolutely. In fact, following (2), the series K(y, 2) =IK(y,32)= > AwPK(y, 2)
= > (K(x, %), AuK(x, ¥))z= > AiK(y, 2) as function of y is strongly con-
vergent. It converges then in the ordinary sense for every y, in particular
for y=32. Thus, K(z, 2) = ZAkK(z, z) < o, ApK (2, 2)20. Consequently

T MK, 5) | £ X (@rK () P(AK (3, 3D
< [ MK (w, 2)- 2 MK (y, )12
If the resolution of identity { P} has a discrete spectrum {0} and if the

r.k. of 84,9 is denoted by 85K, then we have again an absolutely convergent
representation
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9) K(x, y) = 2, 8.K(x, 9).
k

An especially important case which is most often applied is one where
the spectrum is simple. Then the subspaces 8,9 are one-dimensional and
each is generated by a function gi(x) which we can suppose normalized,
”gk”=1. The functions gz(x) form a complete orthonormal system in 9.
The kernels 8,K (%, ) are given by gi(x)ge(y), and (9) takes the form of the
well known development of the kernel in an orthonormal complete system

(10) K(=z, y) = ; () g:(y),

which for a long time was taken as a basis of the definition of a r.k.

Suppose now that the resolution of identity {P;\} is given by a system of
functions f,(\)=f.(x, N) satisfying (a), (b), and (c¢’). Following (4) we define
for u=K(x, v) (considered as function of x), the functions

(K(xv 3’), Afn) . f’n(y: 7\") - fn(yy >‘/) _ dfn(y: >‘> .

1) e (y A) = A*)‘ A m (N — () dun(N)

From (6) and (5) we then obtain

(12) K(y, ) = (K(#, 2), K(x, 3)) = wa‘lﬁn(y, N) @a(z, N,

(13) K(p3) = X f "1 ®uly, V) [2dun

The series and the integrals in (12) are absolutely convergent because of
(13).

The function ®,(y, N) is in general defined for each y only almost every-
where in X in the sense of the measure u,. Nevertheless, in most applications
it turns out to be a continuous function of N. In spite of this, ®,(v, \o), as func-
tion of ¥ for a fixed Ao, will not in general belong to 9.

11. Operators in spaces with reproducing kernels(®). In a class F forming
a Hilbert space with a r.k. K, the bounded operators admit of an interesting
representation.

The notation L.K (%, ¥) indicates that the operator is applied to K(x, ) as
function of x and that the resulting function is considered as function of x
(but it will depend also on ¥ which will act in the transformation as a param-
eter). It is then clear what is meant by L.K (x, 2), L.L] K (x, ), and so on. The
notation Lf(x) is clear and we may also write Lf(x,) if x, is a particular value
of x. Consider the adjoint operator L* (that is, the operator for which (Lf, g)
=(f, L*g)). Take the transform

(®) The developments of this section are closely related with the work and ideas of E.
H. Moore.
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() Alx, 9) = LiK(s, ¥).

A is a function of the two points x, y. As function of x it belongs to F.
Take then for any f& F the scalar product (f(x), A(x, ¥))-= (f(x), LK (x, ¥))=
= (Lf(x), K(x, 3))==Lf(¥),

(2) Li(y) = (f(x), A(x, 3))-
In this way, to each bounded operator there corresponds a kernel A(x, ¥)

which for every y, as function of %, belongs to F. The operator is represented

in terms of the kernel by formula (2).
Let us now find the kernel A*(x, ) corresponding to the adjoint operator
L*. We have (L*)*=L and thus

(L.K(x, 2), K(x, y) = (K(, 2), L3K (=, 3)),
(A*(x; Z), K(xr 3’)) = (A(xr y)! K(’U, Z))r
3 A*(y, 3) = Az, 9).

It is clear that to Li+Ls or aL correspond A;-+A; and aA réspectively.
We shall now find the kernel A corresponding to the composition L= LiLs.
Since (L Ly)*=L#L{*, we have

Ay, 2) = (Lal2)yK(y, 8) = LoliK (3, 2)
= L:uAl(yr Z) = (Al(x: Z)v A:(x’ y)) = (Al(x, Z)v A2(:V! x))
(4) A(yv Z) = (Al(xy z)s 1—26’_:—;‘5) f07’ L = L1L2.

Let us note the following properties resulting immediately from (1)—(4):

(), A%, 9)) e 80))w = (f(2), (8(3)s A%, 3))u) =
= (f(&), A ), g(¥)s) =
(6)  The symmetry of L is equivalent to the hermitian symmetry of A:

A(x, 3’) = A(yr %).

()

We prove now the following property:

(7N The operator L is positive if and only if A is a p. MALrix.
In fact, L positive means that for every fEF, (Lf, /)=0. For
f= 2 %K(x, y&) we then get .

Z Z fi?i(LxK(x) yi)1 K(x: y;))

= Z Z g‘iz‘j(A*(x’ yi)’ K(x’ yi)) = Z Z A*<yf1 yi)g-ig-:l'
= > > A(ys y958i > 0.
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This proves that A and thus A is also a p. matrix. It also proves the well
known fact that a positive operator is always symmetric.

If now A is a p. matrix, we see that (Lf, f) =0 will be satisfied for all f
of the form Y K (x, y1). As these functions form a dense set in F, every
function fEF may be approximated by them and we get (Lf, f)20 by a
passage to the limit.

In generalizing the notation of §7 we shall write A;<KAz or A,<KA; for any
two kernels if A;— Ay is a p. matrix.

TrEOREM 1. For an arbitrary kernel A(x, v), hermitian symmetric (that is,
A(x, y) =A(y, x)), the necessary and sufficient condition that it correspond to a
bounded symmeltric operator with lower bound Zm> — o and upper bound
SM<+ w is that mK<<KAKLMK.

Proof. Necessity. If L is the corresponding symmetric operator with
bounds not less than m and not greater than M, we have

m(f, f) = (Lf, f) = M(J, /) for every f € F.

It follows that ((L—mI)f, f)20 and ((MI—L)f, f) 20, that is, the oper-
ators L—mI and MI~—L are positive. Therefore, from (7) we obtain that
A—mK and MK —A are p. matrices.

Sufficiency. The condition of the theorem is clearly equivalent to

1
0K —— (A —mK)< K.
M —m

This means that the kernel K;= (1/(M —m)(A—mK) is a p. matrix and is
&K. Therefore it is a reproducing kernel of a class Fy with the norm || II:
and following Theorem I, §7, FxCF and ||fil: 2 ]|fi| for A€ F1. Then, as in
Theorem III, §7, the operator

Lif(3) = (J(#), Ka(#, 3))

is a positive operator in F with a bound not greater than 1, that is,

0= @Lf )= 1)

This operator corresponds to Ki(x, y) by its definition. Consequently, to
A= (M —m)K,+mK there corresponds the operator L= (M —m)L,+ml and
the last inequalities give

m(f, f) £ (mIf, /) + (M — m)Lof, ) = M(f, ),
m(f, ) = (Lf, ) = M(f, ).
An arbitrary kernel A is representable in a unique way in the form

(8) : A = A1+ iAo, Ay and Ap hermitian symmelric.

Namely, we have
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1
Al(x: y) = —2' (A(x, y) + A(y: x));
- (9 .
Ao(x, ) = % Az, 9) — Ay, %))

The necessary and sufficient condition in order that A correspond to a
bounded operator is, clearly, that A; and A, correspond to such operators. To
the last kernels we can apply Theorem I.

We now consider convergence of operators. The three simplest notions of
limit for bounded operators are the following: the weak limit, w.lim,—., L= L,
if Lu converges weakly to Lu for every « € F; the sirong limit, str. lim L, =L,
if L,u converges strongly to Lu; the uniform limit, un. lim L,=L, if |L.— L]
—0, where || || for operators denotes their bound.

It is clear that weak convergence follows from strong convergence and
that strong convergence follows from the uniform one.

It is known that w. lim L,=L involves the boundedness of all || L.|| and

the inequality ||Z|| <lim inf. | L.

THEOREM II. If L=w. lim L,, then for the corresponding kernels we have
A(x, ¥) =lim A,(x, y) for every x, ¥ in E. If L=un. lim L.,, then A, converges
uniformly to A in every set of couples (x, ) for which K(x, x) and K(y, y) are
uniformly bounded.

The first part follows immediately, by the definition of weak convergence
from
Alw, 9) = (A(, 3), K(z, ). = (LK, 9), Kz 9))s
= (K(z, ¥), L.K(3, ). = lim (K(3, ), L..K(z, ®)). = lim A,(x, y).

The second part follows easily from
= [|KG @ = L):EG, 2]
< |&G, w2 = Ll | K 9.
= L = La[(K(x, 2) K(y, 9D
Consider now two orthonormal complete systems in F, {gh} and {g"}
(in particular we may have g, =gn). The double system {g;(x)g;’(y)} is a
complete orthonormal system in the direct product F® F.

If A(x, y) belongs to the direct product we know that it is representable
by an absolutely convergent double series

(10) A%, y) = 2 cangn(®)8d (9)
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where the coefficients am, satisfy me ]amnl 2< 0 and are given by

(11) amn = (g2 (9), (gn(2), AL, 9)) 2y = (& (9, Lgm(3))-

TuEOREM II1. For every bounded operator L, the series in (10) with coeffi-
cients given by (11) is convergent for every x and y in the sense

r g
(12) A(x, 9) = lim 2 2 amgn(®)gd’ (9).
?,0=c0 me==1n=1
The A(x, v) belonging to the direct product F® F correspond to operators with
finite norm.

Let P.. and P/’ be the projections on the subspaces generated by
gl, g, --,gland g{’, gi’, - -+, gd’. It is clear thatstr. limy—o Py =1,
str. lim,—,, P¢’ =1I. Consequently, for any %, v in F

(13) lim (P)'s, LPyw) = (v, Lu).
P, 9==00

If we take now v=K(z, ¥) and u=K(z, x) as functions of z, we get P;'v
=PlK (2, 3)= 2%g!' (g (3), Pyu= 2 3en(z)gn(x) and (11) and (13) then
lead directly to (12).

The norm of an operator L is given by N(L)= Z,‘,‘Z:lHLgm“Z for any
orthonormal complete system {g,}. It is independent of the choice of this
system and may be finite or infinite. From (11) it is clear that

Lgn(y) = 22 atmntn (3)
ne==1

by development in the system {g.’ }. Consequently, HLg,’,‘(y)HZ: >y | otmn 2
and R(L) = D mey 2 me1 | @ma| 2 which proves the second part of our theorem.

12. The reproducing kernel of a sum of two closed subspaces. Let F be a
class with a r.k. K. We know that the r.k.’s of closed subspaces of F cor-
respond to the projections on these subspaces.

The problem of expressing the r.k. of the sum F;® F; of two closed sub-
spaces in terms of the r.k.’s K; and K, of these subspaces is therefore reduced
to the problem of expressing the projection P on F;@® F; in terms of the pro-
jections P; and P; on Fi and Fa.

In order to obtain this we shall at first prove the identity

[(P — P)(P — Py)]»

(1) ke _ o -
= P — 3 Py(PyPy)¥1 4 Py(P1Py)t=1 — (PyPy)* — (P1Py)*] — (PoP)™

k=1

We shall use the known properties of projections, namely: Py = P,P=PP,
=P?, P2=P2P=P.P2=P§,
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PP —P)=(P— P)P =0, Py(P — Py) = (P — Py)Py = 0.
Then, denoting the expression (P—P;)(P—P;) by Q we have
QFPy = Q¥ WP — Py)(P — Py)Py = Q¥ (P — P1)(Pr— P2Py)
= — Q¥ 1Py Py + Q¥ 1P P, Py,
If k>1, the first term is — Q¥ 2(P — P,)(P — P;)P;P;=0, and we have
QFPy = QF¥ 1P Py P, _ B> 1.
For k=1 we obtain
QP = — PyPy 4 PPy Py
Finally, we obtain by induction
(2) OFP; = — (PyP)* + Py(PyPy)%.

Further, we have
3) Q= (P—=P)(P—Py)=P— P — P+ PP

This gives
0" = Qn(P — Py — Py+ PyPy) = Q*'P — Q"1P; — Q"1Py + Q"1 P1 Py,
Since Q1P =Qr1, Q" 1P,=0, we get from (2)
Q= Q" — Q" 'P1+ Q"TIPL P
= Q1 — [—(PyP)» + Py(PyP1)™]
+ [—(PyP))" 1Py + Py(P2P1)" 1 Ps]
= Qr1 4 (PpPy)" ! — Py(PyPy)»t — Po(PiPy)" ' + (PrP2)™
This expression is valid for »=2. Adding these equations side by side for

n=m, m—1, - - -, 2, and using the formula for Q given in (3), we obtain
the required formula for Q™. This formula may be written in the form

P = [(P — P)(P — P)]m+ (P:P)"

(4> - k—1 k—1 k k
4 3 [Py(PoPy) st + Py(PyPa) =t — (PyP1)* — (PiPa)*].
k=1
We shall prove now that for m— w, (P;P1)™ converges strongly to the
projection P, on the intersection Fy of Fy and F;. In order to do so we shall

consider the operator L= P,P; in the space Fy.
In this space L is a positive operator (and therefore symmetric) with

bound not greater than 1. In fact, for u & F,
(PQP]%, PgPlu) = !]P2P1M”2 é HP1M!|2 = (P114, Plll) = (Pl%, %) = (Plll, PzH)
= (PyPut, ) = HP114| t g Hu |>2,
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(5) 0 = (Lu, Lu) £ (Lu, u) = (4, u).

Consider now for any f& F the sequence {L’“f}. For k=1, L*f=P,P,L*'f
& F,. Putting u=L*f in (5), we get

0 = (LMY, L) £ (LH, L¥f) < (L4, LY),
0 < (L2, L) < (L™, Lf) = (L%, Lf).

Consequently the sequence {L"f, Lf) } is a decreasing sequence of positive
numbers and therefore it is convergent. This gives

lim [2nf = Lof|]* = lim [(L7f, Lnf) = (L7, 1)
’ — (@, L") + (Lf, L))
= lim [(Z*Y, Lf) — 2L, Lf) + (L=, L) ] = 0

and thus L™f converges Strongly. This means that L™ converges strongly to
some bounded operator Po. We have further Lm+lf = LL"f=L"Lf, which, for
m—> o, gives

(6) LPyf = Pof = PoLf.

Therefore L"Pof = Pof and Pif=lim L™P,f = Pof. In the subspace R, Py
as a limit of symmetric operaters is symmetric. Together with Pif=Pf it
shows that in Fy the operator Py is a projection. It is the projection on the sub-
space of all Pyf. From (6) we get || PaPiPof|| <[| P1Pof|| <|| Pof] =||P.P.P-
Consequently “PgPl_PofH =HP1P0fH =HPOf”, P2P1P0f=P1Pof=Pof and
.PofEF():Fl'FQ. Inversely lf %EF1'F2, then LM=P2P1M=% and Po%
=lim Lu=u. :

Thus, in Fy, P, is the projection on Fy. Then for any f& F, we have by (6)
Pof = PoLf = PoPoPif = projection of f on Fy.

In our formula (4), besides the series Z and the term (PoP;)™ we have still
the expression (P — P1) (P — Py)™. P — P, is the projection on F'&P,and PSP,
is the projection on F'© Fy, if we denote F1 @ F; by F'. Consequently for m— 0,
the last expression converges strongly to the projection on the intersection
of (FF&F,) and (F'©F,). But this intersection is reduced to the element
zero because were there in it any element %30, it would belong to F’ and
would be orthogonal to Fy as well as to Fe. Thus, % would be orthogonal to
F, @ F;= F’ which is impossible.

In this way we finally obtain the desired formula for the projection P:

(7) P = Po+ 2 [Pi(P2P))"t 4 Po(PiPo)*t — (PoPr)* — (P1Py)*].
k=1
The subspace Fy@® Fy is defined as the closure of the subspace Fi+ Fe
composed of all sums fi+fe, i€ F1, € Fa. In general Fi+F, is not a closed
subspace.
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Formula (7) is especially advantageous when F-4-F;, is closed and thus

equal to F/=F @ F,.
Let us analyze this case more in detail. It w111 be convenient to make the

non-essential assumption that
(8) Fy=F;-F, = (0), thatis, P, =
The angle between two elements (vectors) fi0, fo520 is given by

cos a=Re (fi, f)/||fil|llfzl|- The minimal angle ¢, 0<¢ <7/2, between F; and
F. is given by(1?)

(fl’ f2)
9 = Lu.b. Re 7 0#f1EF, 0 fy EF,.
®) e 7T7 I et e
It is easily seen that, for fiE Fy, fo € Fo,
(10) | Gu £ | = 1Al 7] cos @,
(11) |1 21f2l| = [|£:]] cos &, [ Pofd| = |Ifill cos &,
(12) 5147l 2 Il sing, [+ 72l 2 7] sin @

In (12), sin ¢ is the greatest constant ¢=0 for which an inequality of
type ”f1+f2”>CHf1“ is true. By a theorem of H. Kober [1] such inequality
with ¢>0 is necessary and sufficient in order that Fy+ F> be closed.

Consequently, we shall know that F'= F;-+ F; if we prove an inequality

(13) v+ 7l = dlAll,

with any ¢>0. Such a constant is necessarily less than or equal to 1 and it
gives always an evaluation of the minimal angle ¢:

(14) sing = ¢ > 0.

The angle ¢ being positive, the inequalities (11) show that the bounds of
the operators (P2P1)" in Fy or (P1P;)"™ in Fy are not greater than cos?"¢.Formula
(7) may now be written in the form

P = (P, — PPy -+ P\PyP; — P PyPiPy+ - --)

(15)
+(Pz‘_P2P1+P2P1P2—P2P1P2P1+...)

and the two series are uniformly convergent to the operators @y and Q, which
give the decomposition of fEFi+ F; in f=Qif +Qsf, Qof EFy, Q3f E Fo.

It should be remarked that the decomposition of the series in (7) into the
two series (15) is not possible when ¢ =0, as the operators Q; and Q. are then
unbounded.

When the series in (15) are used for computation it is very easy tofget

(*%) The notion of a minimal angle between two subspaces seems to have been first intro-
duced by K. Friedrichs [1].
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estimates for the remainder. Usually we shall want to compute, for f and g
in F, the value of (f, Pg)=(f, Q1g) +(f, Q=g). It is clear that when we stop in
the series of Q; at the nth term P =(—1)»1P,P,P; - - -, then the remain-
der R of this series will be given by

(16) R;n) = — Pin)Qz for odd n, R;n) = - Pin)Ql for even n.

We have similar developments for the second series defining Q. Conse-
quently, the error in (f, Qig) (for example when # is odd) is given by (f, Ryg)
== (Pgn)*fy QZg)

(n) (n)%

an (R | = 1P A Qe

By (12) we have ”ng“ =<(1/sin d))”g“. As P® is already computed,
P™* is known also and we can compute || P{"*f||. This will give quite a pre-
cise evaluation of the error. Without knowing P{” we can evaluate ”P({"*f”
=|1#l] cos »~1¢.

Even in case ¢ =0 we could still evaluate the error in (f, Pg) if Qig and
Q. exist and if we can evaluate their norms.

Still another evaluation of error (preferable as an a priori evaluation), in
the case ¢ >0, is obtained directly from (4):

P->1 1=1UP—=P)P — P)]™+ (PP)™
b=1

It can be proved that the minimal angle of F'&F; and F/&F,is the same
as between F; and F,. Consequently

1P = P — P} < costmtg,  [|(PaP)7]| < costn o,

m

’ P—->1 ]H'< 2 cos?™ L ¢,
k=1
where || || signifies bounds of operators.
In case of a sum of more than two subspaces F' = Fi®@ ;@ F;® - - - we

can still express the projection on F’ in terms of projections on Fy, Fyy - -+,
but the formula will be much more complicated than in the case of two sub-
spaces and for this reason may not be as valuable.

Let us consider now the translation of our formulas in terms of the re-
producing kernels K;, K, and K’ of the classes F,, Fy,and F'=F, @ F.. We
shall suppose that the classes F; and F; have no function $£0 in common,
that is, Fi- Fo=(0).

To the projections Py, P;, P there correspond (in the sense of §11) the
kernels K1, Ky and K’. To each term in the series (7) or (15) there corresponds
a kernel given by the following table of correspondence

P K,(.’Xi, 3’), Pl(_) Kl(xy y), PZ(—) KZ(xr y)»
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PPy Mi(z, y) = (Ki(z, 3), Ko(3, %))z
PyP1 o Ma(y, %) = (Ka(z, ¥), Ki(z, )
(PrPy)" o A, 9),  (P2PO)™ e Au(y, ),
where
Aa( 9) = A1z, 9), Aaa(, 8)e = (Any(2, 9), Ang(®, 2))ss a4 12 = 1,
Pi(PyP)n s A, (5, y) = A (3, %) = (Ki(, 9), Aa(, )
Py(PyPo)" &> A, (3, ) = A (3, %) = (Ka(s, 9), An(s, 2))s

Formula (15) can now be written in the form

i

K'(x, 9) ;1 (Roa(®, 9) + Ala(®, 9) — Aul, 9) — Au(y, %))

(18)

; (Arlt—l(xv 3’) - An(xi y)) + E (A:t-l-l(xi :V) - An(y’ x))

If we use these series to compute K’(x, y) for given points x and y, we
shall represent it in the form

K'(%, y) = (K'(3, v), P.K'(3, %)) = (K(z, 3), P.K(3, %))

and apply our evaluation of error to this form.

13. Final remarks in the general theory. In the present section we
shall collect a number of shorter remarks about the nature of classes of
functions with reproducing kernels and of their norms, and concerning some
relations between the classes and their r.k.’s.

(A) Classes of functions for which a r.k. exists. (R.K.)-classes. Consider a
set E and a linear class F of functions defined (and finite) everywhere in E.
The problem which arises is to find under what circumstances we can de-
fine a norm in F giving to F the structure of a Hilbert space with a r.k.
For abbreviation we shall call such classes of functions (R.K.)-classes.

TuroreM L. In order that the class F (not necessarily linear) be contained in a
(R.K.)-class it is mecessary that there exist am increasing sequence of sets
ECEC -+, E=Ei4-Ey-+ « - -, and for each f#0 of F a positive number
N(f), so that the functions f(x)/N(f) be uniformly bounded in each E,.

In fact if Fy is the (R.K.)-class containing F, || |l: and K its norm and
kernel, we define as E, the set of all yEE with Ki(y, ) £# and as N(f) the
norm [|f|l.. Then, for each yE€E, and fEFCF, we have )| =] &),
Ki(x, 0] = [fllliKate, 9= NO (K, )12 and [7(9)] /N() Sl

The necessary condition of Theorem I is not always satisfied even for an
enumerable sequence of functions. As an example, consider in the interval
E=(0, 1) the sequence of functions f,(x) =1/|x—7.| for x#7, and fu(r,) =0.
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Here {m} is a sequence of numbers everywhere dense in E. By an easy
topological argument we prove that the sequence of functions f, does not
satisfy the condition of Theorem I.

TueoreM L1. For an enumerable sequence {fn(x) } the condition of Theorem
I is also sufficient in order that this sequence be contained in a (R.K.)-class.

In fact, consider an upper bound M,, <« for ]f,,(x) ] /N(f),n=1,2,- -+,
xEE,. We write

0

1 .
K(z, y) = 2 an(x)fn(y)-

Clearly, the series is absolutely convergent and represents a p. matrix.
Each term of it

1 N
Ixn(x! y) Z"M‘ZNz(fn) fn(x)fn(y)
is also a p. matrix and K,&K. Theorem I of §7 gives then for the cor-
responding classes F,CF. Obviously F, is the one-dimensional class gen-
erated by f,. Therefore f,& F and {fn} CF.

The condition of Theorem I is certainly not sufficient in general. This may
be shown by a simple set-theoretical argument. Let us consider namely the
class Fy of all bounded functions on E. We can then take E,=E, N(f)
=Lu.b. lf(x)l. If Nis the power of E then the power of a (R.K.)-class F is
N¥ (as the functions K(x, ¥) =h,(x) form a complete system in F). On the
other hand, the power of the class F, is =c® (¢ is the power of continuum)
and for N>Ng, ¢®>NRo,

(B) Convergence in classes with reproducing kernels. Consider a class F
with a r.k. K. We know that if f, converges strongly to f in F, then it con-
verges uniformly in every subset of E where K(x, x) is uniformly bounded.
Therefore the sequence {f.} satisfies the condition

(1) fu(x)—f(x) for every xEE, the convergence being uniform in every set
of an increasing sequence of sets EyCE,C « - - with E=E+E;+ - - -

Consider now the class ® of all functions defined in E. In ® we can in-
troduce a notion of limit as follows:

(2) f(x) = ®-lim f.(x), if condition (1) is satisfied.

It is clear that in general the sequence of sets E, will depend on the
sequence {fn}. We can now formulate the following theorem.

TrEOREM 111. I every class F with a r.k., the sirong convergence of f.(x) to
f(x) involves ®-lim f,(x) =f(x).

It should be noted that the weak convergence in F does not involve in
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general the ®-convergence. But there are important cases where even weak
convergence involves ®-convergence. Such cases were considered in §2, (5).

(C) Relations between (R.K.)-classes and corresponding norms and reproduc-
ing kernels. To a p. matrix there corresponds a uniquely determined class
and norm, but to a (R.K)-class there correspond infinitely many norms
giving to it the structure of a Hilbert space with a r.k. Consequently to a
(R.K.)-class there correspond also infinitely many p. matrices which are
r.k.’s of the class for convenient norms.

If the norm || || corresponds to a (R.K.)-class F, the norm l ”1=6“ Il,
¢>0, obviously also corresponds to F and the corresponding r.k.’s K and K;
satisfy

1

In fact, the scalar product (,): is clearly =¢2(,) and thus f(y)
= (f(x), K(=x, 3)) =c*(f(x), (1/¢)K (x, 3)) = (f(x), (1/c}) Ex, YD)

We shall now have to apply an important theorem of S. Banach [1] in
the theory of linear transformations.

Let T be a linear transformation of a linear subspace F’ of a complete
space F on a linear subspace F{ of a complete space Fi. The subspaces F
and FY. are not necessarily closed. The transformation T is called closed if

from {f,} CF', fa—fEF, and Tf,—~fEF, follows fEF', i€ F{ .and Tf=fu.

Banace’'s THEOREM. If T is a closed linear transformation of F' on Fi,
F'CF, F{ CF,, F and F, complete normed vector spaces and if F' is a closed
subspace of F, then T is continuous and consequently bounded (that s, there
exists @ M >0 with || Tf||, < Mllf||). The image F{ is either = F or of first cate-
gory in Fy.

Before we apply this theorem we shall prove the following lemma:

LEMMA. Let Fy and F; be classes with ».k.’s and let Fy be their intersection
Fi- Fy. The correspondence transforming f & Fo considered as belonging to Fi inio
f considered as belonging to Fs is a closed linear transformation. -

In fact, suppose that { f,,} C Fy and that f, converges strongly to fin
Fy and to '/ in Fs. Following Theorem 111

f'(2) = ®-lim fu(x) = f"(x).
Therefore, f'=f'! & F,, which proves the lemma.

Tueorem 1V. Let F and F.CF be (R.K.)-classes and || ||, | |1 some
norms corresponding to F and Fi. Then there exists a constant M>0 such that

17l = Mlfl] for rEF.

In fact the identical transformation of F, considered as subspace of Fi
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on Fy as subspace of F is closed (following the lemma), F; is a closed sub-
space of Fi, and thus our theorem follows immediately from Banach’s
theorem.

CoroLLARY IVi. Let || || and || |1 be two norms corresponding to the same
(R.K.)-class F. There exist two positive constants m and M such that m||f||

=|flli=Ml5|l, sor rEF.

Theorem IV, together with Theorems I and II from §7 and with the re-
mark that to norm M]|| || corresponds the kernel (1/M?)K, gives immedi-
ately the corollaries:

CoROLLARY IV, Let K and K, be two p. mairices, F and Fy the corresponding
classes. In order that FyC F it is necessary and sufficient that there exists a posi-
tive constant M such that K;<<KMK.

CoroLLARY IV, Under the hypotheses of corollary IVa, in order that Fi=F
it 15 necessary and sufficient that there exist two positive constants m and M
such that mK <LK, <KMK.

The second part of Banach’s theorem together with our lemma leads to
the following remark which belongs to the subject matter of section (A).

REMARK. If {Fn} is a strictly increasing sequence of (R.K.)-classes, then
their sum F= ) F, is not a (R.K.)-class. In fact, were there a norm ||
in F giving it the structure of a Hilbert space with r.k., the subspaces F,CF
would be of first category in F and therefore F would be of first category in
itself which is impossible.

(D) Connection with existence domains in o Hilbert space. We shall now
use the notion introduced recently by J. Dixmier [1] of domains of existence
in a Hilbert space. A linear subset of a Hilbert space is called a domain of
existence, d.e., if there exists a closed linear transformation defined in this
subspace and transforming it into a subspace of another Hilbert space (which,
in particular, may be identical to the first Hilbert space). The d.e.’s D in a
given Hilbert space $ with norm f H may be characterized by the following
property: there exists a norm H [1 defined in D giving it the structure of a
Hilbert space and satisfying

3) |7« = |4l - for every b € D.

In fact, if D is a d.e., then we consider the linear closed transformation
T of D into a subspace of some Hilbert space $’, with the norm || ||”. It is
then clear that the norm || ||; defined by

s = 1Al + fl )

gives D the character of a complete Hilbert space which satisfies condition

(3).
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On the other hand, suppose that a norm H Hl is defined in D satisfying
(3) and giving D the character of a complete Hilbert space. Then the cor-
respondence transforming any element of D, considered as a subspace of 9,
into the same element considered in the Hilbert space D (with norm H Hl)
is obviously a closed transformation and D is therefore a d.e.

Using Theorem II from §7 and Theorem IV of section (C) we prove now
immediately the following theorem.

TaEOREM V. If a class of functions F forms a Hilbert space with a reproducing
kernel, then for any linear subclass FyCF, the necessary and sufficient condition
in order that Fy be a (R.K.)-class is that Fy be a d.e. in F.

If we have two classes of functions Fi, Fs, with reproducing kernels, we
can combine these two classes in different ways in order to form new classes.
Let us consider in particular the following classes of functions: Fo=FF,

and F=F1+F2

Tueorem V1. If Fy and F, are (R.K.)-classes, then the same is true of the
classes Fi- Fs and Fi+ F..

Proof. The linearity of the classes is obvious. We take firstly the inter-
section Fy. With any norms || || and Il ||z corresponding to Fy and F: we
" define the norm in F, by the equation :

A = 11513+ Il

This norm clearly defines a quadratic metric in Fo satisfying all the re-
quired properties. For instance, the completeness of Fgresults immediately

from the lemma of section (C).
As |7l 2|7l for fFEFs, Theorem II, §7 gives then the existence of a r.k.

for F().
In the case of the sum, F= F;+ F,, we may apply the theorem of §6 which
states that K, and K, being the r.k.’s with the norms H H1 and H H2 of Fy

and Fy, Ki+ K, is the reproducing kernel of our class F.

Besides the operations of - and +, we can also introduce the direct
product F1 ® Fs as defined in §8 as another operation leading to a (R.K.)-class
when F; and F; are (R.K.)-classes. The class F1® F; however is defined not in
E but in the product set EXE. If we take its restriction to the diagonal set
of all pairs {x, x}, we get a class of functions defined in E. It can be proved
that this class does not depend on the choice of norms in Fi and F: as long as
the norms give to F; and F; the structure of a Hilbert space with a r.k.

Part II. EXAMPLES

1. Introductory remarks. In this part we shall give examples showing how
our general theory may be applied in particular cases and to what kind of re-
sults it leads. With a few exceptions we will not go into the details of calcula-
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tion and will not give in explicit form the formulas and relations obtainable
by our general methods.

We shall treat essentially two kinds of kernels: the Bergman’'s kernels
K(3, ) and the harmonic kernels H(z, z1).

(1) Bergman's kernels. These kernels correspond to a domain D in the
space of # complex variables z= (30, 2, ... 3®™) We consider the class
A =5 of all analytic regular functions in D with a finite norm given by

ik

= ff . ff |z, 2, - - - 5m) de“)dy(“dx‘?)dy(?) e datdy™,
D

where 2® = x® -4y,

The class ¥ possesses a reproducing kernel K=Kp—the Bergman’s
kernel corresponding to D.

In our examples we shall consider essentially the case of plane domains
D. If D is multiply-connected we shall consider also the reduced Bergman’s
kernel K’(z, %), which is the reproducing kernel of the subspace %’ of A con-
sisting of all functions of ¥ with a uniform integral f*dz. If D is of finite con-
nection #, the complementary subspace d&U’ is (#—1)-dimensional and is
generated by # functions w, () (between which there is the linear relation
Zwk’ =0) defined in the following way: if By, k=1, 2, -, n, are the
boundary components of the boundary B of D, w{ is the derivative (which
is uniform) of the multiform analytic function w; whose real part is the
harmonic measure #; of D corresponding to By, that is, the harmonic func-
tion regular in D, equal to 1 on By, and vanishing on all the other components
B..

The functions w{ belong always to % and are orthogonal to A’. We have
the relation

Kz ) = K'(z, 21) + 2 casw! (3)w] (z1),
if

where D is the r.k. of A ©%’. Consequently the matrix {¢:;} is definite positive
(see §3) and it is the conjugate inverse of the Gramm’s matrix {(wi’, w/) }

Bergman’s kernels possess an important property of invariance: in case
of domains in the space of # variables 2%, - - -, g™ if T represents D pseudo-
conformally on D’, then

Kp (7, 51)0T(2)0T (1) = Kp(z, 21).

Here, 2’ =T(2), 2 =T(21), and 87 () is the Jacobi determinant of 7. In the
case of domains in the plane, if £(3) represents D conformally on D’, this
formula takes the form

Kp(Z, 2l) ¥ ()¢ (z1) = Ep(z, 21).
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The importance of the Bergman kernels lies in the possibility they offer of
generalizing different theorems on analytic functions of one complex variable
to functions of several complex variables (such as Schwarz’s lemma, distor-
tion theorems, representative domains in pseudo-conformal mappings).

In the case of one variable almost all the important conformal mappings
are expressible in terms of these kernels. For instance if D is a simply con-
nected domain, the mapping function { =f(z, 2,) which represents D on a circle
]é‘] <R insuch a way that the point 20&D goes into { =0and f’(z0, 20) =1 is
given by

1 z
f(z, 20) = mfzo K(2, z0)d!.

(2) Harmonic kernels. Consider in a plane domain D (we could consider
also a domain in #-dimensional space) the class $=%p of all regular harmonic
functions (in general complex-valued) with a finite norm given by

llhllZ=ff |1 |2dxds, s =zt iy
D

This class possesses a reproducing kernel which will be denoted by
H(z, #).

It should be remarked that another harmonic kernel is often considered,
namely the one which corresponds to the Dirichlet metric

Ve = [ f 1wl + 13| Jowas.

This kernel is easily expressible by Bergman’s kernel and consequently
does not present any additional difficulties to the ones encountered in the
study and computation of Bergman’s kernels.

The situation is different for the kernel H. Even for very simple domains
(for instance for a rectangle) there is no known explicit expression of H even
in the form of an infinite development. (We disregard here the developments
in terms of a complete non-orthogonal system which are always possible to
establish for a r.k., but whose coefficients are quotients of determinants of
growing orders.) ,

One reason for the greater difficulty of the investigation of the kernels
H(z, %) as compared to Bergman’s kernels lies in the fact that I has no such
invariancy property vis-2-vis conformal transformations as have Bergman's
kernels.

The interest of the kernel H lies in its connection with the biharmonic
problem which governs the question of equilibrium of elastic plates.

The kernel H gives a simple expression for a function #(z) such that
#=0u/dn=0on the boundary B of D and AAu=¢ in D, for agiven function ¢.
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Supposing that we know a function ¢ such that Ay =¢ (we can take as y the
logarithmic potential of ¢: ¥(2) = (1/7)[[p log |2—2'| $(z')dx'dy’) we get for
u the expression (where g is the ordinary Green’s function)

u(s) = — f L ¢(z, #')da'dy’ [W) —~ f fD H(, z”)zp(z”)dx”dy”].

The Green's function gr7(z, z) of the biharmonic problem, satisfying
AAgrr=0 for z5£2, grr =0gr1/0n=0 on the boundary, is given by

grr(z, 1) = f f 8(z, 2)g(d, s1)da’dy’
D

—-ff 2(z, z’)dx’dy’ff H(, 3)g(z", z1)da""dy".
D D

These formulas were essentially noticed already by S. Zaremba [2].

2. Comparison domains. Consider two domains in the plane, D and
D', DCD’. The kernels Kpr or Hp-, restricted to the domain D, are reproduc-
ing kernels of classes A or B? formed by the restrictions of functions from
Ap: or Bps. As any analytic or harmonic function vanishing in D vanishes
everywhere, any function f, of %°® or B° is a restriction of only one function f
from Ap. or Bp and, following §5, Part I, the norm ||fo|°=]|f]|". It is then
clear that every fo&° belongs to Up and that ||fo|*=]|f .

We can apply Theorem II of §7, I, which gives

48 Kzo)' < Kp, Klo;r being the restriction of Kp» to D.
In the same way we get
) Hp <& Hp.

If the kernel Kp is known, we get immediately the well known estimates
for the kernel Kp-:

©) Kp/(s, 2) £ Kn(z, %), |Kpi(z 21) | £ (En(, 3)Kp(z, 21))*/?

for points 2 and 2; belonging to D.

But the relation (1) (or (2)) allows much better estimates. Suppose that
the kernel Kp: is known. For two points 2z and 2; in D take domains D'’ and
D{’ such that 2&D"'CD, ;& D/’ CD and that the kernels Kp:» and Kp; be
known (for instance circles). Then, from (1), we get Kp(z, 3) SKp/'(z, 2),
Kp(z1, 21) £Kp) (21, 21),

l KD(Z, Z1) —_ KD’(Zy Zl) IZ
< [Ko(s, 2) — K (2, 2)][Kp(z, 21) — Ko (21, 21) ]

4) =
= [Kp(z, 2) — Ko(z, 2)][Kp} (21, 21) — Kpi(z1, 71) ).
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If we consider a boundary-point ¢ where the boundary has a finite curva-
ture and if we fix z; and move z towards ¢, the estimate (3) will grow like
1/| z——tl . The estimate (4) by a convenient choice of the comparison domains
D', D" and D{’ will give a bound for l Kp(z, 21)| growing only like 1/ z-—t} vz,

To show the interest of this improvement, take D simply-connected and
consider the conformal mapping of D on a circle ]g“[ <R given by

1 z
=—— K(z, z0)dz.
d K (20, %0) fzo (5 50)ds

Our problem will be to compute the point 7 on the circumference ];[ =R
corresponding to ¢ on the boundary B. As the kernel K is not known we
approximate it by a development in orthogonal functions. This development
may converge fairly quickly inside the domain but in general it will not
converge on the boundary and will converge less and less well the nearer we
come to the boundary.

To calculate 7 we have to integrate from 2, to the point  on the boundary.
We cannot integrate term by term the development of K as it does not con-
verge on the boundary. What we do then is to find, with the help of the
estimate (4), a point z near ¢ for which the integral ztll K(z, 20) [ dz is suffi-
ciently small. We can integrate the development of K term by term from
20 to 2; and obtain as good an approximation of 7 as we wish.

It is clear that with the estimate (3) we would not be able to do this.

3. The difference of kernels. As we saw in §2, in DC Dy, the kernels
K=Kp and K;=Kp, satisfy the relation K;<KK (the kernel K,; being re-
stricted to D). To illustrate the developments of §7, I, let us investigate
the class of functions F; corresponding to the p. matrix K, given by

(D Ki(z, 51) = K(z, 31) — Ki(z, 21) 2 and 21 in D.

Following the notation in the proof of Theorem II, §7, T (where F=1,
Fy=90;), we introduce the operator L in % by

®) Lf = fie) = (f, Ka(z, 22)) = f fD F) K 7 dwdy.

If we consider the Hilbert space §; of all functions %(z) in square inte-
grable in D; with the norm

Hu”i = fj;)!u(z) Igdxdy,

the general property of r.k.’s as projections shows that fi(z), as functionin
Dy, is the projection on ¥; of the function f(z)=f(z) in D and =0 in D;—D.
Consequently,

1@ = 1aGlh = 7] = 6.
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The second inequality may become equality for f(z) #0 only in the case
when D, —D is of two-dimensional measure 0 (for instance when D differs
from D; only by some slits). We will exclude this case and consequently

3) @l = [zl < 7 for f # 0.
We introduce then the operator L’ by
L'?=7]—1L,

The subspace Fy is here reduced to 0 as 0%f=Lf is impossible in view of
(3). Therefore F'=F=% and the only possibilities for the class F; are: 1°,
F,=9% or 2°, F; is a dense subspace of 2.

The first case represents itself always when D is completely interior to
D, (DCDy). In fact, the operator L is then completely continuous. To prove
this we take a sequence {g(") } C converging weakly to g&. The functions
g™ converge then weakly in §; to g and their projections 2™ on 9, converge
weakly to gi. But the weak convergence in %, involves uniform convergence
of g () towards g1(2) in any closed subset of Dy, in particular in D (see section
(5), §2, I). When we restrict the functions g™(2) and gi(z) to D they become
the transforms Lg™ and Lg. Therefore, the uniform convergence of ¢®to g
in D involves the strong convergence of Lg®™ to Lg in the space 2.

Following our remarks after Theorem III, §7, I, the class Fo=F'=3. To
get the norm Hf“z corresponding to the kernel K, we have to find the solution

g(2) of the equation
g—Lg=/

which exists and is unique for every fE¥. Then

19113 = Hlall” = llgdls

where

gi(z1) = Lg = fj;)g(z)Kl(z, z1)dxdy.

Let us note that the operator L which in general has a bound not greater
than 1 has here a bound less than 1.

To illustrate the second case we have to take a domain having common
boundary points with the boundary of D;. It seems probable that for every
such domain D we shall be in the second case (at least if one of the boundary
components of D arrives at the boundary of D).

To prove that we are in the second case, wg have to show that the
operator L has a bound =1. Then L cannot be completely continuous (as the
bound is not attained). The class F; is a proper subclass of 2. The class F{ of
all functions
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Jo(x) = g(2) — &(2), where g1 = Lg, g € ¥,

is a proper subspace of F,, dense in F.. For such a function f;, the norm in
F is given by

I7all2 = Nll” = gl

The class F; in the metric of % is a dense subspace of ¥. There are func-
tions €U which do not belong to F. and for which, a fortiori, the equation
f=g—Lg has no solution g&¥. (There may be such a solution, analytic in D
but not in square integrable in D.) ‘

For two explicitly given domains D C Dy, it may not be easy to prove that
we are in the second case by using the property that the bound of L is 1.
We can transform this property into another one, more easily proved.

To this effect we shall consider for any function fiE%; the quotient

@) o) = Al A

LeMMA. In order that the bound of L be 1 it is necessary and sufficient thai
there exist functions fi with Q(f1) as near 1 as we wish.

To prove this lemma we remark firstly that the Lu.b. Q(f1) for fi&¥: is
the same as the Lu.b. Q(Lf) for fEY. In fact the Lf form a dense subspace in
the space ¥; (otherwise there would be a g€, g1740, with (g1, Lf)1=0 for
every f&¥. Therefore (g1, f) = (g1, Lf)1=0 and g =0 in D which involves
g1=0 in D). Consequently, there is for every fi&: a function f&¥ with
llfi—Lf|l: as small as we wish. As ||fi—Lfl] <|lfi—Lfll: it is clear that Q(Lf)
will approach Q(f1) as nearly as we wish.

Now, Q(Lf) can be represented as

(L, L) _ A1)
(&Zf, Lf)y  &h )

Our lemma amounts to the equivalence of the two properties, for any «,
0< a=1:
(6") (Lf, Lf) = &*(f, /) for dl f € ¥,
(6") (Lf, Lf) £ o(Lf, f) forall f € U.

From (6') follows (6”): '

(Lf, Lf) = a(Lf, f) = a(Lf, LH)VX], HY?
&Lf, LN < alf, NV (L, L) = &*(f, /).

From (6") follows

(6"") (Lf, ) £ a(f, ) forall f € .

(%) QlLf) =
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In fact, we have

(Zf, /) £ (&f, LAY, H* = a(f, DY V2 = o(f, ).

From (6’'') follows (6'"): we use the fact that L is positive which gives
(Lf, &) (L, fHY*(Lg, )% Then

(Lf, Lf) < (Lf, HMALLS, L) = (Lf, ))M2eM2(Lf, L)Y,
(Lf, LHYE £ at¥(Lf, N1 (LS, Lf) £ olLf, f).

This proves our lemma.

We shall apply the lemma to two domains DCD; having a common
boundary point which belongs also to the boundary of the exterior of D. We
suppose further that at this boundary point the boundaries of D and Dy have
a common tangent. We can take the common boundary point as the origin O
and the inner normal of the boundaries at this point as the positive axis.

It is then easily verified that the functions

n=12---,

1

W(2) = ——

fn(2) ETEY

for sufficiently great values of #, belong to %; and that they satisfy the
asymptotic equation

[1£al] ~ 1| 72lls for n— .

This shows that the Lu.b. Q(f) =1 and that we are in the second case.

Let us consider now another kind of example which we excluded till now.
Namely, we shall suppose that the domain D differs from D; only by a num-
ber of slits of finite length. It is then immediately seen that for a function
FEY,, considered as belonging to ATCA (A =class U; restricted to D), we
have

7] = 1Al

Consequently 2 is a closed linear subspace of % and the kernel K(z, z1)
— K(2, 21) corresponds to the subspace A©%j.

4. The square of a kernel introduced by Szegé. We shall now give an
application of Theorem II, §8, I. Consider a domain in the plane with a suffi-
ciently smooth boundary (for simplicity’s sake we may suppose that the
boundary curves are analytic). For this domain we shall consider a kernel,
first introduced by Szego [1], which we shall denote by k(2, 21). This kernel
corresponds to the class S of all analytic functions which possess in square
integrable boundary values. As the functions are not necessarily continuous
on the boundary we have to specify the meaning of the boundary values of
the functions. We shall suppose that for such a function f(z), its integral
F(2) is a continuous function in the closed domain (but F(z) may be a multi-




392 ' N. ARONSZAJN [May

form function). Then we suppose that for any two points #, #; of the same
boundary curve the difference F(t;) — F(#;) may be represented by the integral

/ ltzfa)dz,

where f(f) is defined almost everywhere on the boundary curves and is in
square integrable there. The integral is taken over an arc of the boundary
curve going from # to ts.

The function f(f) will be considered as the boundary value of f(z) in the
boundary-point ¢. f(¢) is completely determined by f(z) with exception of a
boundary set of linear measure zero. The existence of boundary values of
f(2) in our sense is equivalent to the absolute continuity of F(z) on the
boundary. With the boundary values taken in this sense we define a norm in
class S by the equation

Il = £ f 150,

where C, are the boundary curves and ds is the element of length on the curve.
For the functions of class S it is easily proved that the Cauchy theorem is
still valid in the form
[
fz) = 2. @ dt.

t— 2z

CV
From this it is immediately seen that the class possesses a reproducing

kernel which is the kernel k(z, 2;) introduced by Szegé. Quite recently, in his
thesis, P. Garabedian [1] proved that

1 ? 4
(1) Bz, 21) = — K(z, 1) + 2 au, 50! (D)w/ (21)
47 i
where K is the Bergman kernel for the domain and w/ are the functions in-

troduced in §1.
In cases of simply-connected domains Garabedian’s formula takes a very

simple form, namely:

1
k2(z, 21) = — K(z, 21).
47

In this case Theorem II, §8, I, gives a property of analytic functions which
seems to have been unnoticed even for this simple case. Every function f(z)
in square integrable in the domain D is representable in infinitely many ways
by a series

(2) . f(z) = 22 ¢u(z)¥s(2)
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where the functions ¢x(2) and ¥.(z) are in square integrable on the boundary.
In addition, we have the formula

@ fD | @) P'asdy = min 5 5 fcm(t)&(—t)ds fcx&k(t)mds,

the minimum being extended to all representations of f(z) in the form (2).
In particular, we have the inequality

4r f fDIqS(z)\//(z) dady < fclqs(t)]st fclw) |2ds,

In the case of a multiply-connected domain the problem is a little more
complicated because of the presence of the functions wy. It can be proved
then that if we replace the Bergman's kernel K by the reduced kernel K’
(see §1) we have again a formula similar to (1):

1 -
4) k(z, 1) = . K'(z,21) + Z Bi,sw! (2)w/ (21)

where, now, the 8; ; are the coefficients of a positive quadratic hermitian form,
which means that Y ;represents a positive matrix. Consequently, the func-
tions of the class corresponding to the kernel k2 are sums of functions in
square integrable in D with a uniform integral (which form the class belonging
to K’) and of a linear combination of the w{ (which form the class cor-
responding to 2_:,;). The functions w{ are in square integrable in D, and thus
every function belonging to the class of k? is in square integrable in D. Con-
versely, it can be proved that every function in square integrable over D
belongs to the class of k2. By Theorem II, §8, I, we know that the functions
belonging to k2 are of the form (2), but we will not be able to obtain a formula
like (3) for the case of a simply-connected domain. However, a more compli-
cated formula generalizing (3) does exist. In the present case of a multiply-
connected domain, we have still the property that the product ¢(2){(z) is in
square integrable in D if ¢ and ¢ are in square integrable on the boundary,
but the inequality between the integrals will not be as simple as in the case
of a simply-connected domain.

5. The kernel H(z, z) for an ellipse. We shall construct the kernel
H{z, 2) for the ellipse D

x2 y2 ,

(1) D: ;;—I—-b—z—=1, ¢>b,

by use of an orthonormal complete system(*!).

(1) The system and the corresponding expression for the kernel were communicated to us
by A. Erdélyi. It should be noted that the system was already introduced by S. Zaremba [1]
who also noticed that it is orthogonal and complete in the Dirichlet metric.
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We write
(2) a = h cosh ¢, b = hsinh ¢,
(3) 2= x-+ iy = hcosh ¢, C=E+ i

(3) gives us a conformal transformation of the rectangle R, 0<§<e,
—m <n<w on the ellipse (1) with the rectilinear slit —a <x <h. Consider in
the rectangle R the analytic function p,(2) =sinh »n{/sinh { (positive integer
n). It is immediately seen that in the variable 2 the function is a polynomial
of degree n—1. Consequently, all the polynomials in the variable z can be
expressed as finite linear combinations of these polynomials for #
=1, 2,3, - - - . Since the harmonic polynomials form a complete system in
our class 8 of harmonic functions, the real and imaginary parts of p,(2) also
form a complete system. On the other hand, it is easy to verify that these real
and imaginary parts form an orthogonal system. This verification is made in
an easy way by performing the integration in the rectangle R instead of the
domain D. Using the formula

fj;)f(x, y)dxdy = h2foe f;”f(x, ¥) ] sinh ¢ |2d§d-,,

one verifies easily that the sequence ¢,(z) defined by

2 [ n\V?

Pon—g = 7(—) (sinh 2ne + # sinh 2¢)~Y2Re p,(z), »=1,2,+--,
T

(4)

2 [/ n\'?
bon—s = -;(—) (sinh 2ne — # sinh 2¢)~Y2 Im $,(2), »=2,3,---,

T
is orthonormal. We can then write the kernel of our class in the form

4 2 Re p.(z) Re p.(z1) Im $,(z) Im pn(z) }
g = — .
®) & 21 E n{sinh 2ne + »n sinh 2e + sinh 2#e — % sinh 2e

]Zzﬂ' n=1

6. Construction of H(z, ) for a strip. Our next example will use the
theorem of the limit of kernels for decreasing sequences of classes (see
Theorem I, §9, I). It will be at the same time an example of a representation
of a kernel by use of a resolution of identity in a Hilbert space (see §10, I).
Consider the kernel of §1 and suppose that in the ellipse

x2 y2
P + _b—2 =1

the axis b <a remains fixed, while a— . The ellipse in the limit will become
the horizontal strip |y| <&. It is clear that our theorem on the limit of
kernels applies in this case and we get the kernel H(z, 2,) for the strip as a
limit of the kernels corresponding to ellipses. Before performing this passage
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to the limit, we shall at first make a few preliminary remarks.

As in the preceding paragraph, we consider the quantities » and e given by
b=rh sinh ¢, a=h cosh ¢, b being fixed and a— . We see immediately that
h— o and e—0 in such a way that he—b. '

In the conformal mapping, z=% cosh { we introduce a new variable {’
by the equation

o = — i
T

Then =1 sin 7e{’, and the ellipse with the slit along the real axis going

from -+% to —a is transformed in the rectangle

3 T
R, 0<¥ <1, —-—2—<n'<~——'
€

Consider a point 2 in the horizontal strip [ y| <b. For sufficiently large
values of % the ellipse will contain 3. Suppose that Im 2>0, then the cor-
responding ¢’ will lie in the upper half of the rectangle R. and for A—,
¢'—z/bi. The point { '’ =’ —mi/e will then correspond to the conjugate point
2, so that (¢'’ +mi/e)—%i/b. If we now return to the formula for the kernel
from §5 and replace the function p.(z) by the expression sinh #n{/sinh {,
then replace { by et/ +m4/2 and separate the series which expresses the kernel
H (see (5), §5) into parts corresponding to even and odd indices, we can
write the kernel in the form of a sum of four series:

cos inel’ cos tnely
Re

Re h ! h 7
4 Z n cos 1€l cos 1€l
Th noda B sinh 27¢ + # sinh 2e
cos inel’  cos inel{
Im — Im —
4 n cos el cos ze{y{
+—= 2 — . .
Th noeda B sinh 2ne — % sinh 2e
sin ine’ sin inel{
e e
4 ”n cos gel’ cos tel{

+— 2 —

Th neven B sinh 2ne + # sinh 2e

sin inel’ I sin inel{

4 Im o m -
n €OS 1€ cos ey
+— X —

Th neven B sinh 2xe — # sinh 2e

For i— «, if we denote #/k by ¢ and if we then notice the asymptotic formu-
" las he~b, ne~Dt, n sin 2e~2b¢, it is immediately seen that the series repre-
sent approximating Riemannian sums for the integrals
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© Re cos b’ Re cos ibth © Tm cos bt Im cos ibif{
—f sinh 2b¢ + 2Bt _f sinh 2b¢ — 2b¢
L2 f°° Re sin ib#¢’ Re sin bty 2 f Im sin 62" Im sin 2bi¢y p
sinh 2b¢ 4+ 2b¢ sinh 2b¢ — 2b¢

when we subdivide the infinite interval (0, 4+ ) into equal intervals of length
2/k and in each interval take the value of the integrated function in the
center (for the first two series) or in the right end (for the two last series).

The convergence of these sums towards the integrals for z/— o is easily
verified and in this way we obtain for the kernel of the horizontal strip the
expression given by the above four integrals where we replace {’ and {{ by
the values z/b7 and 2;/b::

H( ) 2 f‘” Re cos 2 Re cos z:¢ + Re sin zf Re sin zi¢ i
3z, %1) = —
' sinh 2b¢ + 2b¢

K

2 f°° Im cos gt Im cos 2:f -+ Im sin z£ Im sin 2;¢ i
sinh 26t — 2b¢

This integral representation of the kernel corresponds to a resolution of
identity in the Hilbert space B corresponding to the strip. This resolution of
identity has a quadruple spectrum (see §10, I) defined by the following four
functions fi(z, N): fi(z, \) =0 for AZ0, for A>0

A sin z\ 1 — cos 2\
fi(z, N) = f Re cos ztdt = Re ——  fa(z, \) = Re ———>
0 2 z
sin g\ 1 — cos 2A
fa(3, N) = Im ’ fulz, AN =Im—-"
z

It is easily verified that these functions satisfy the conditions (a) and (b)
from §10, I. The condition (c’) results from the fact that the functions f
determine the r.k. H(z, 2) of the class ¥ by the formula above.

7. Limits of increasing sequences of kernels. In the preceding section
we had an example of a limit of decreasing sequence of classes and kernels.
We shall give here an example of an increasing sequence of kernels.

Consider the Bergman'’s kernels K, for a decreasing sequence of simply-
connected domains D, such that D, CD, and E=lim D,=D,-D,- - - - con-
sists of the two closed circles Cy: ]z—2| =<1, and Cs: |z+2] <1, with the seg-
ment of thereal axis I: —1=x=1, y=0.

Following the general theory of §9, I, we have to consider the set Eo
where Ko(z, 2) =lim K,(3, 2) < .

Every point of the open circle Cy belongs to Eo. In fact, if K is the Berg-
man’s kernel for C;, by the method of comparison domains (see §2) we get
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K,&KKy in C; and consequently K(z, z) =lim K,(z, 2) = Ky (z, 2) for zin Ci
The same is true for 2& C,. We are going to prove that

1) Ey=Ci+ Co.

We have to show that for & E— E,, lim K,(2s, 20) = ©. We use again a
domain of comparison. We take a closed line L defining an exterior domain
S containing E and such that by a convenient translation we can approach
L as near as we wish to 2, without touching E. The domain S will contain all
D, from some # onwards. For these n, K,>>Kg, therefore lim K,(zo, 20)
= K s(z0, 20). The translation of the line L (and the domain .S) will have on
K s(z0, 20) the effect as if the domain .S were fixed and the point 2o were moving
towards the boundary L. Asfor Bergman’s kernels of domains of finite connec-
tion we have the theorem that K(z, z) goes uniformly to + « when z ap-
proaches the boundary (%), we arrive at the result, lim K,(z, z0) = + .

For z0&€ E— E,, with exception of o= £ 1, we can take as L a sufficiently
small circumference. For zy= +1, a circumference cannot do. We take then
for L the boundary of a square, for instance, for zo=-41, we take the square:
—e<x<l—¢e e<y<l-te

Using the notation of §9, I, (B), we see immediately that the class F,
with the norm || ||, is here a subspace of the class F of all functions f(z) de-
fined in the two open circles C; and C., analytic and regular in each (but f(z)
in Ci is not necessarily an analytic continuation of f(z) in Cy), with a finite

- norm

112 =ff0 lf(Z)Idedy—l-f02 | 1) |2ddy.

Consequently, the condition 2° of §4, I is satisfied and we obtain a func-
tional completion Fy of F,. Then, it is easily proved, by using general ap-
proximation theorems of analytic functions, that the space Fg coincides with
F. .
The r.k. of Fis immediately seen to be given by:

K(z, 21) = 0 if 2 and 2, belong to different circles,
K(z, z1) = Ku(z, 21) if 2 and 21 belong to C..

Similar results can be obtained if the domains D,, Dny1CD, have an
arbitrary intersection E=D;-Ds- - - - . The set E, is then the set of all in-
terior points of E.

8. Construction of reproducing kernels by the projection-formula of §12,

(*?) This theorem is proved by using conformal mapping and the invariancy property of
Bergman'’s kernels. For the kernels H for which the invariancy property is not true, a similar
theorem has been proved only for domains with sufficiently smooth boundaries.
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I. The formula of §12, giving the r.k. of a sum of two closed subspaces, may
serve in many cases for the construction of kernels. We shall indicate here a
few cases when it can be applied.

(1) The expression for H(z, z:) in terms of K(z, z1). Consider for a domain
D in the plane the classes % and 8. In spite of the similarity of the metrics in
the two classes, the relationship between their kernels K and I7 does not seem
a simple one. We shall get such a relation by using the formula (18), §12, 1.

To this effect we remark firstly that the class B is a class of complex
valued functions, that is, every function & of the class is representable in the
form %= hy+ihs, hy and ks harmonic and real-valued. Consequently, the class
9 is a linear closed subspace of the class 8. Also the class 9 of all antianalytic
functions (that is, conjugateﬁ;) of analytic functions f) with a similar norm
is a closed linear subspace of §. On the other hand, it is clear that every
function A€ § is representable as a sum

hz) = f(3) + fa(@)

with two analytic functions f; and f,. These functions are uniquely determined
with the exception of additive constants. In general, in this decomposition,
the functions fi and f; may be of infinite norm, that is, they may not belong
to our classes 9 and . But when the boundary of D is not too irregular it
may be proved that a dense subclass of B is decomposable in this form with
f1 and f; belonging to % and 9 which means that =% ®. In order to avoid
the indetermination of the above decomposition of &% into fi+fz because -
of the additive constant, we shall admit to the class ¥ only functions f satis-

fying the condition
f f fdxdy = 0.
D

With & so fixed, the condition %-% = (0) is satisfied. Consequently, we can
apply our formula to calculate the kernel H.
We obtain for H a development of the form

) Hm) = D Al 22) + A 2 — Al 2) = KaGea, 2)
n=1

where the A’s are expressible in terms of the r.k.’s of ¥ and I following the
formulas from §12. Since the kernel for % is K(z, %), the kernel for ¥ is im-
mediately seen to be K(z, z1) +const. The constant is easy to determine and
we get for the kernel K of I the expression K(z, z1) = K(z1, z)—1/c where o
is the area of D. All the terms of the development of H are then expressible
by repeated integration in terms of the kernel K alone.

This development can serve to compute H when K is known. It will be
especially useful when the domain is such that the subspaces % and ¥ of B
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form a positive minimal angle. This is equivalent to the fact that there exists
a constant m >0 such that

nl|fll = |f + 7l foranyfEXTFET

It is easy to see that the last condition is equivalent to the following prop-
erty of harmonic, real-valued functions 2&%:

W] < ol Jor some constant ¢ > 0,

where 7 is the conjugate harmonic function of % (that is, k4% is analytic).
This property can be proved for domains with a fairly smooth boundary
(continuous tangent), with at most a finite number of angular points with
positive angles (see K. Friedrichs, [1]). Consequently we can apply (1) to
compute the kernel H for a rectangle, which computation would be espe-
cially useful in view of applications to rectangular elastic plates.

(2) We shall describe now a manner of applying our formula to calculate
the kernels K.

Let C be a closed set in the plane (not necessarily bounded) of two-
dimensional measure 0. Usually C will be composed of a. finite number of
arcs or closed curves. C decomposes the plane in a certain number of domains
Dy, Ds, - - - which together form an open set D. In D we consider the class of
functions Ap formed by all functions which in each of the domains D, are
analytic and regular. We call such functions locally analytic and the set C .
their singular set(®).

We shall suppose further that the functions of %p have a finite norm given
by

@) ' Il = [ f 156) Pasas.

The class Ap possesses a r.k. Kp which is simply expressible by the Berg-
.man’s kernels Kp_in the following way:

Kp(z, 21) = Kp, (2, 21) if 2 and 21 belong to D,,

3 v
) Kp(z, 21) = 0 if 2 and 2, belong to two different D,’s.

There is no loss in generality if we suppose that C is bounded (we can
use conformal mappings to reduce every case to this one). We shall denote
by Dy the domain D, containing «.

Consider a decomposition of C in two closed sets

@) C=CW +Co,

To every C® corresponds the complementary open set D and we have
(5) D = DM.D®,

(*3) The author introduced and investigated this kind of function in his thesis in Paris [2].
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Every function f(z) locally analytic in D is decomposable into two func-
tions f(3) =f1(2) +f2(2) each of which is locally analytic in the corresponding
domain D (see N. Aronszajn [2]). Two such decompositions differ by a
function with the singular set CV- C®.

The classes % p are clearly linear closed subspaces of Ap (when we restrict
their functions to the set D).

The intersection of Apw and Ape is equal to the class Ap- where D* is the
complementary set of C*=C®-C®. ‘

The class Ap is reduced to 0 when the intersection C* is a finite or an
enumerable set.

The equality

(6) Ap = Apw & Apw

is not always true.

For simplicity’s sake we suppose now that C is not equal to 0 and is com-
posed of a finite number of rectifiable arcs or closed curves, not reduced to
isolated points, and that the same is true of C® and C®,

It can then be proved that the necessary and sufficient condition in order
that (6) be true is that C*=C®-C® #0.

Further, if C*=0, then ApS [Upw @Ap@] is a one-dimensional space
generated by the function w’(z) defined as follows: let %(z) =hew,cow be the
_ locally harmonic function in D, taking the value 1 on C® and 0 on C®. De-
note then by w(z) the function locally analytic in D (but not necessarily
single-valued in the multiply-connected components D, of D), whose real
part is 4(z). The derivative w'(z) =h.—ih} is single-valued in D and belongs
to Ap. h(z) is called the harmonic measure in D corresponding to C.

From what we said, it results that we shall be able to calculate the kernel
Kp by the formulas of §12 in the following cases:

(1) When C*520 and %p+#0 we can apply the general formula (7), §12, I,
translating operators into kernels, in particular P, Py, P, and P, into Kp,
Kp+, Kpw, and Kpw. To calculate Kp we have then to know Kp-., Kpw,
and Kpw. ,

(2) When C*5£0 and %p-=(0) we can apply formula (18) §12, L.

This case contains interesting particular cases; for instance in the case of
a simply-connected domain bounded by a polygonal line C. We can decom-
pose C into one side CV and a polygonal line C» having one side less than C.
This gives an inductive process to calculate the kernel Kp of the open set
complementary to C. By this process we obtain, at the same time, the two
Bergman’s kernels for the interior and exterior of C. This is especially inter-
esting as these kernels will give the conformal mapping functions of the
domain on a circle.

Another case in point is one when to a slit C in the plane we add a
rectilinear segment C®, having only one point in common with CV. This
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case may be of interest for the variational methods, as they were used by
Loewner [1], for instance, in the problem of coefficients of schlicht functions.

(3) When C*=0, then Ap+=0. We can apply formula (18), §12, I, to com-
pute the kernel of Apo @A pw» if Kpw and Kpw» are known. Then, if we know
the function w’(z), we add the function (1/“w’”2)w’(z)w’(zl) to the obtained
kernel and arrive at the kernel Kp. The classes %pw and Ap® have, in this
case, a positive minimal angle for which a lower estimate can be obtained
(using the constant m from the inequality m||fi]| <||fi+f.| as in §12, I) by the
use of methods developed by the author in [3].

If we consider the reduced classes A} of functions of %p with single-
valued integrals in every component domain D, of D, we shall obtain ar. k. K}
expressible by a formula similar to (3) in terms of the reduced Bergman’s
kernels Kp . For the reduced classes we have always Uh=%ho®A%e® and
in the case C*=0, we shall calculate K% directly by formula (18)
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